DIFFERENTIAL EQUATIONS(LL) W/WILEYPLUS
DIFFERENTIAL EQUATIONS(LL) W/WILEYPLUS
3rd Edition
ISBN: 9781119764601
Author: BRANNAN
Publisher: WILEY
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 5.8, Problem 31P

The Tautochrone. A problem of interest in the history of mathematics is that of finding the Tautochrone-the curve down which a particle will slide freely under gravity alone, reaching the bottom in the same time regardless of its starting point on the curve. This problem arose in the construction of a clock pendulum whose period is independent of the amplitude of its motion. The Tautochrone was found by Christian Huygens in 1673 by geometrical methods, and later by Leibniz and Jakob Bernoulli using analytical arguments. Bernoulli’s solution (in 1690 ) was one of the first occasions on which a differential equation was explicitly solved.

Chapter 5.8, Problem 31P, The Tautochrone. A problem of interest in the history of mathematics is that of finding the

The geometric configuration is shown in Figure 5.8.3 . The starting point P ( a , b ) is joined to the terminal point ( 0 , 0 ) by the arc C . Arc length s is measured from the origin, and f ( y ) denotes the rate of change of s with respect to y :

f ( y ) = d s d y = [ 1 + ( d x d y ) 2 ] 1 / 2 .         (i)

Then it follows from the principle of conservation of energy that the time T ( b ) required for a particle to slide from P to the origin is

T ( b ) = 1 2 g 0 b f ( y ) b y d y .         (ii)

(a) Assume that T ( b ) = T 0 , a constant, for each b . By taking the Laplace transform of Eq. (ii) in this case and using the convolution theorem, show that

F ( s ) = 2 g π T 0 s ;         (iii)

Then show that

F ( y ) = 2 g π T 0 y .         (iv)

Hint: See Problem 37 of Section 5.1.

(b) Combining Eqs. (i) and (iv), show that

d x d y = 2 α y y ,         (v)

where α = g T 0 2 / π 2 .

(c) Use the substitution y = 2 α sin 2 ( θ / 2 ) to solve Eq. (v), and show that

x = α ( θ + sin θ ) , y = α ( 1 cos θ ) .         (vi)

Equations (vi) can be identified as parametric equations of a cycloid. Thus the Tautochrone is an arc of a cycloid.

Blurred answer
Students have asked these similar questions
Why is this proof incorrect? State what statement and/or reason is incorrect and why. Given: Overline OR is congruent to overline OQ, angle N is congruent to angle PProve: Angle 3 is congruent to angle 5   Why is this proof incorrect? Statements Reasons 1. Overline OR is congruent to overline OQ, angle N is congruent to angle P 1. Given 2. Overline ON is congruent to overline OP 2. Converse of the Isosceles Triangle Theorem 3. Triangle ONR is congruent to triangle OPQ 3. SAS 4. Angle 3 is congruent to angle 5 4. CPCTC
x³-343 If k(x) = x-7 complete the table and use the results to find lim k(x). X-7 x 6.9 6.99 6.999 7.001 7.01 7.1 k(x) Complete the table. X 6.9 6.99 6.999 7.001 7.01 7.1 k(x) (Round to three decimal places as needed.)
(3) (4 points) Given three vectors a, b, and c, suppose: |bx c = 2 |a|=√√8 • The angle between a and b xc is 0 = 135º. . Calculate the volume a (bxc) of the parallelepiped spanned by the three vectors.

Chapter 5 Solutions

DIFFERENTIAL EQUATIONS(LL) W/WILEYPLUS

Ch. 5.1 - In each of Problems 5 through 12, determine...Ch. 5.1 - In each of Problems 5 through 12, determine...Ch. 5.1 - Find the Laplace transform of each of the...Ch. 5.1 - In each of Problems 14 through 17, find the...Ch. 5.1 - In each of Problems through , find the Laplace...Ch. 5.1 - In each of Problems through , find the Laplace...Ch. 5.1 - In each of Problems 14 through 17, find the...Ch. 5.1 - In each of Problems through , find the Laplace...Ch. 5.1 - In each of Problems through , find the Laplace...Ch. 5.1 - In each of Problems 18 through 21, find the...Ch. 5.1 - In each of Problems through , find the Laplace...Ch. 5.1 - In each of Problems 22 through 24, use the facts...Ch. 5.1 - In each of Problems 22 through 24, use the facts...Ch. 5.1 - In each of Problems through , use the facts that ...Ch. 5.1 - In each of Problems through , using integration...Ch. 5.1 - In each of Problems 25 through 30, using...Ch. 5.1 - In each of Problems through , using integration...Ch. 5.1 - In each of Problems through , using integration...Ch. 5.1 - In each of Problems through , using integration...Ch. 5.1 - In each of Problems 25 through 30, using...Ch. 5.1 - In each of Problems 31 through 34, determine...Ch. 5.1 - In each of Problems 31 through 34, determine...Ch. 5.1 - In each of Problems 31 through 34, determine...Ch. 5.1 - In each of Problems through , determine whether...Ch. 5.1 - A Proof of Corollary 5.1.7 (a) Starting from...Ch. 5.1 - The Gamma Function. The gamma function is defined...Ch. 5.1 - Consider the laplace transform of tp, where p1....Ch. 5.2 - In each of Problems through, find the Laplace...Ch. 5.2 - In each of Problems through, find the Laplace...Ch. 5.2 - In each of Problems 1 through 10, find the Laplace...Ch. 5.2 - In each of Problems through, find the Laplace...Ch. 5.2 - In each of Problems through, find the Laplace...Ch. 5.2 - In each of Problems through, find the Laplace...Ch. 5.2 - In each of Problems 1 through 10, find the Laplace...Ch. 5.2 - In each of Problems through, find the Laplace...Ch. 5.2 - In each of Problems 1 through 10, find the Laplace...Ch. 5.2 - In each of Problems through, find the Laplace...Ch. 5.2 - (a) Let F(s)=L{f(t)}, where f(t) is piecewise...Ch. 5.2 - In each of Problems through, transform the given...Ch. 5.2 - In each of Problems through, transform the given...Ch. 5.2 - In each of Problems 12 through 21, transform the...Ch. 5.2 - In each of Problems 12 through 21, transform the...Ch. 5.2 - In each of Problems 12 through 21, transform the...Ch. 5.2 - In each of Problems 12 through 21, transform the...Ch. 5.2 - In each of Problems through, transform the given...Ch. 5.2 - In each of Problems through, transform the given...Ch. 5.2 - In each of Problems 12 through 21, transform the...Ch. 5.2 - In each of Problems 12 through 21, transform the...Ch. 5.2 - In section 4.1 the differential equation for the...Ch. 5.2 - In each of Problems through, find the Laplace...Ch. 5.2 - In each of Problems 23 through 27, find the...Ch. 5.2 - In each of Problems 23 through 27, find the...Ch. 5.2 - In each of Problems 23 through 27, find the...Ch. 5.2 - In each of Problems 23 through 27, find the...Ch. 5.2 - The Laplace transforms of certain functions can be...Ch. 5.2 - For each of the following initial value problems,...Ch. 5.3 - In each of Problems 1 through 8, find the unknown...Ch. 5.3 - In each of Problems 1 through 8, find the unknown...Ch. 5.3 - In each of Problems 1 through 8, find the unknown...Ch. 5.3 - In each of Problems 1 through 8, find the unknown...Ch. 5.3 - In each of Problems 1 through 8, find the unknown...Ch. 5.3 - In each of Problems 1 through 8, find the unknown...Ch. 5.3 - In each of Problems 1 through 8, find the unknown...Ch. 5.3 - In each of Problems 1 through 8, find the unknown...Ch. 5.3 - In each of Problems 9 through 24, using the...Ch. 5.3 - In each of Problems 9 through 24, using the...Ch. 5.3 - In each of Problems 9 through 24, using the...Ch. 5.3 - In each of Problems 9 through 24, using the...Ch. 5.3 - In each of Problems 9 through 24, using the...Ch. 5.3 - In each of Problems 9 through 24, using the...Ch. 5.3 - In each of Problems 9 through 24, using the...Ch. 5.3 - In each of Problems 9 through 24, using the...Ch. 5.3 - In each of Problems 9 through 24, using the...Ch. 5.3 - In each of Problems 9 through 24, using the...Ch. 5.3 - In each of Problems 9 through 24, using the...Ch. 5.3 - In each of Problems 9 through 24, using the...Ch. 5.3 - In each of Problems 9 through 24, using the...Ch. 5.3 - In each of Problems 9 through 24, using the...Ch. 5.3 - In each of Problems 9 through 24, using the...Ch. 5.3 - In each of Problems 9 through 24, using the...Ch. 5.3 - In each of Problems 25 through 28, use a computer...Ch. 5.3 - In each of Problems 25 through 28, use a computer...Ch. 5.3 - In each of Problems 25 through 28, use a computer...Ch. 5.3 - In each of Problems 25 through 28, use a computer...Ch. 5.4 - In each of Problems through , use the Laplace...Ch. 5.4 - In each of Problems through , use the Laplace...Ch. 5.4 - In each of Problems 1 through 13, use the Laplace...Ch. 5.4 - In each of Problems through , use the Laplace...Ch. 5.4 - In each of Problems through , use the Laplace...Ch. 5.4 - In each of Problems through , use the Laplace...Ch. 5.4 - In each of Problems through , use the Laplace...Ch. 5.4 - In each of Problems 1 through 13, use the Laplace...Ch. 5.4 - In each of Problems through , use the Laplace...Ch. 5.4 - In each of Problems through , use the Laplace...Ch. 5.4 - In each of Problems through , use the Laplace...Ch. 5.4 - In each of Problems through , use the Laplace...Ch. 5.4 - In each of Problems through , use the Laplace...Ch. 5.4 - In each of Problems 14 through 19, use the Laplace...Ch. 5.4 - In each of Problems through , use the Laplace...Ch. 5.4 - In each of Problems 14 through 19, use the Laplace...Ch. 5.4 - In each of Problems through , use the Laplace...Ch. 5.4 - In each of Problems 14 through 19, use the Laplace...Ch. 5.4 - In each of Problems through , use the Laplace...Ch. 5.4 - In each of Problems through , use a computer...Ch. 5.4 - In each of Problems 20 through 24, use a computer...Ch. 5.4 - In each of Problems through , use a computer...Ch. 5.4 - In each of Problems 20 through 24, use a computer...Ch. 5.4 - In each of Problems 20 through 24, use a computer...Ch. 5.4 - Use the Laplace transform to solve the system...Ch. 5.4 - A radioactive substance R1 having decay rate k1...Ch. 5.5 - In each of Problems through , sketch the graph of...Ch. 5.5 - In each of Problems 1 through 6, sketch the graph...Ch. 5.5 - In each of Problems 1 through 6, sketch the graph...Ch. 5.5 - In each of Problems through , sketch the graph of...Ch. 5.5 - In each of Problems through , sketch the graph of...Ch. 5.5 - In each of Problems through , sketch the graph of...Ch. 5.5 - In each of Problems 7 through 12, find the Laplace...Ch. 5.5 - In each of Problems 7 through 12, find the Laplace...Ch. 5.5 - In each of Problems through , find the Laplace...Ch. 5.5 - In each of Problems through , find the Laplace...Ch. 5.5 - In each of Problems through , find the Laplace...Ch. 5.5 - In each of Problems through , find the Laplace...Ch. 5.5 - In each of Problems 13 through 18, find the...Ch. 5.5 - In each of Problems through , find the inverse...Ch. 5.5 - In each of Problems 13 through 18, find the...Ch. 5.5 - In each of Problems 13 through 18, find the...Ch. 5.5 - In each of Problems through , find the inverse...Ch. 5.5 - In each of Problems 13 through 18, find the...Ch. 5.5 - In each of Problems through , find the Laplace...Ch. 5.5 - In each of Problems 19 through 21, find the...Ch. 5.5 - In each of Problems through , find the Laplace...Ch. 5.5 - In each of Problems through , find the Laplace...Ch. 5.5 - In each of Problems through , find the Laplace...Ch. 5.5 - In each of Problems 22 through 24, find the...Ch. 5.5 - (a) If f(t)=1u1(t), find L{f(t)}; compare with...Ch. 5.5 - Consider the function defined by and has...Ch. 5.6 - In each of Problems 1 through 13, find the...Ch. 5.6 - In each of Problems through , find the solutions...Ch. 5.6 - In each of Problems through , find the solutions...Ch. 5.6 - In each of Problems through , find the solutions...Ch. 5.6 - In each of Problems through , find the solutions...Ch. 5.6 - In each of Problems through , find the solutions...Ch. 5.6 - In each of Problems 1 through 13, find the...Ch. 5.6 - In each of Problems through , find the solutions...Ch. 5.6 - In each of Problems through , find the solutions...Ch. 5.6 - In each of Problems through , find the solutions...Ch. 5.6 - In each of Problems 1 through 13, find the...Ch. 5.6 - In each of Problems 1 through 13, find the...Ch. 5.6 - In each of Problems through , find the solutions...Ch. 5.6 - Find an expression involving uc(t) for a function...Ch. 5.6 - Find an expression involving for a function that...Ch. 5.6 - A certain spring-mass system satisfies the initial...Ch. 5.6 - Modify the problem in Example 1 of this section by...Ch. 5.6 - Consider the initial value problem y+13y+4y=fk(t),...Ch. 5.6 - In Problem 19 through 23, we explore the effect of...Ch. 5.6 - In Problem 19 through 23, we explore the effect of...Ch. 5.6 - In Problem 19 through 23, we explore the effect of...Ch. 5.6 - In Problem 19 through 23, we explore the effect of...Ch. 5.6 - In Problem 19 through 23, we explore the effect of...Ch. 5.7 - In each of Problems through , find the solutions...Ch. 5.7 - In each of Problems through , find the solutions...Ch. 5.7 - In each of Problems 1 through 12, find the...Ch. 5.7 - In each of Problems through , find the solutions...Ch. 5.7 - In each of Problems 1 through 12, find the...Ch. 5.7 - In each of Problems through , find the solutions...Ch. 5.7 - In each of Problems 1 through 12, find the...Ch. 5.7 - In each of Problems 1 through 12, find the...Ch. 5.7 - In each of Problems through , find the solutions...Ch. 5.7 - In each of Problems 1 through 12, find the...Ch. 5.7 - In each of Problems through , find the solutions...Ch. 5.7 - In each of Problems through , find the solutions...Ch. 5.7 - Consider again the system in Example 3 of this...Ch. 5.7 - Consider the initial value problem y+y+y=(t1),...Ch. 5.7 - Consider the initial value problem Where ...Ch. 5.7 - Consider the initial value problem Where ...Ch. 5.7 - Problem 17 through 22 deal with effect of a...Ch. 5.7 - Problem 17 through 22 deal with effect of a...Ch. 5.7 - Problem 17 through 22 deal with effect of a...Ch. 5.7 - Problem 17 through 22 deal with effect of a...Ch. 5.7 - Problem 17 through 22 deal with effect of a...Ch. 5.7 - Problem 17 through 22 deal with effect of a...Ch. 5.7 - The position of a certain lightly damped...Ch. 5.7 - Proceed as in Problem 23 for the oscillator...Ch. 5.7 - a) By the method of variation of parameters, show...Ch. 5.8 - Establish the distributive and associative...Ch. 5.8 - Show, by means of the example f(t)=sint, that ff...Ch. 5.8 - In each of Problems 3 through 6, find the Laplace...Ch. 5.8 - In each of Problems 3 through 6, find the Laplace...Ch. 5.8 - In each of Problems through , find the Laplace...Ch. 5.8 - In each of Problems through , find the Laplace...Ch. 5.8 - In each of Problems 7 through 12, find the inverse...Ch. 5.8 - In each of Problems 7 through 12, find the inverse...Ch. 5.8 - In each of Problems through , find the inverse...Ch. 5.8 - In each of Problems through , find the inverse...Ch. 5.8 - In each of Problems 7 through 12, find the inverse...Ch. 5.8 - In each of Problems 7 through 12, find the inverse...Ch. 5.8 - (a) If f(t)=tm and g(t)=tn, where m and n are...Ch. 5.8 - In each of Problems through , express the total...Ch. 5.8 - In each of Problems through , express the total...Ch. 5.8 - In each of Problems through , express the total...Ch. 5.8 - In each of Problems through , express the total...Ch. 5.8 - In each of Problems 14 through 21, express the...Ch. 5.8 - In each of Problems through , express the total...Ch. 5.8 - In each of Problems 14 through 21, express the...Ch. 5.8 - In each of Problems 14 through 21, express the...Ch. 5.8 - Unit Step Responses. The unit step response of a...Ch. 5.8 - Consider the equation (t)+0tk(t)()d=f(t), in which...Ch. 5.8 - Consider the Volterra integral equation (see...Ch. 5.8 - In each of Problems 25 through 27: Solve the given...Ch. 5.8 - In each of Problems 25 through 27: a) Solve the...Ch. 5.8 - In each of Problems 25 through 27: Solve the given...Ch. 5.8 - There are also equations, known as...Ch. 5.8 - There are also equations, known as...Ch. 5.8 - There are also equations, known as...Ch. 5.8 - The Tautochrone. A problem of interest in the...Ch. 5.9 - Find the transfer function of the system shown in...Ch. 5.9 - Find the transfer function of the system shown in...Ch. 5.9 - If h(t) is any one of the functions,...Ch. 5.9 - Prob. 4PCh. 5.9 - Use Rouths criterion to find necessary and...Ch. 5.9 - For each of the characteristic function in...Ch. 5.9 - For each of the characteristic function in...Ch. 5.9 - For each of the characteristic function in...Ch. 5.9 - For each of the characteristic function in...Ch. 5.9 - For each of the characteristic function in...Ch. 5.9 - For each of the characteristic function in...Ch. 5.9 - In each of Problems 12 through 15, use the Routh...Ch. 5.9 - In each of Problems 12 through 15, use the Routh...Ch. 5.9 - In each of Problems through, use the Routh...Ch. 5.9 - In each of Problems through, use the Routh...Ch. 5.P1 - Find such that the Laplace transform of the...Ch. 5.P1 - Suppose that the impressed voltage is prescribed...Ch. 5.P1 - Suppose that the impressed voltage is prescribed ...Ch. 5.P2 - In the following problem, we ask the reader to...Ch. 5.P2 - In the following problem, we ask the reader to...Ch. 5.P2 - In the following problem, we ask the reader to...Ch. 5.P2 - In the following problem, we ask the reader to...Ch. 5.P2 - In the following problem, we ask the reader to...Ch. 5.P2 - In the following problem, we ask the reader to...Ch. 5.P2 - In the following problem, we ask the reader to...
Knowledge Booster
Background pattern image
Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Text book image
Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
Text book image
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781305652224
Author:Charles P. McKeague, Mark D. Turner
Publisher:Cengage Learning
Text book image
Algebra and Trigonometry (MindTap Course List)
Algebra
ISBN:9781305071742
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Text book image
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning
Fundamental Trigonometric Identities: Reciprocal, Quotient, and Pythagorean Identities; Author: Mathispower4u;https://www.youtube.com/watch?v=OmJ5fxyXrfg;License: Standard YouTube License, CC-BY