An Introduction to Mathematical Statistics and Its Applications (6th Edition)
An Introduction to Mathematical Statistics and Its Applications (6th Edition)
6th Edition
ISBN: 9780134114217
Author: Richard J. Larsen, Morris L. Marx
Publisher: PEARSON
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 5.6, Problem 9Q
To determine

To prove: θ^=i=1nK(Wi) is sufficient for θ.

Blurred answer
Students have asked these similar questions
A test consists of 10 questions made of 5 answers with only one correct answer. To pass the test, a student must answer at least 8 questions correctly. (a) If a student guesses on each question, what is the probability that the student passes the test? (b) Find the mean and standard deviation of the number of correct answers. (c) Is it unusual for a student to pass the test by guessing? Explain.
In a group of 40 people, 35% have never been abroad. Two people are selected at random without replacement and are asked about their past travel experience. a. Is this a binomial experiment? Why or why not? What is the probability that in a random sample of 2, no one has been abroad? b. What is the probability that in a random sample of 2, at least one has been abroad?
Questions An insurance company's cumulative incurred claims for the last 5 accident years are given in the following table: Development Year Accident Year 0 2018 1 2 3 4 245 267 274 289 292 2019 255 276 288 294 2020 265 283 292 2021 263 278 2022 271 It can be assumed that claims are fully run off after 4 years. The premiums received for each year are: Accident Year Premium 2018 306 2019 312 2020 318 2021 326 2022 330 You do not need to make any allowance for inflation. 1. (a) Calculate the reserve at the end of 2022 using the basic chain ladder method. (b) Calculate the reserve at the end of 2022 using the Bornhuetter-Ferguson method. 2. Comment on the differences in the reserves produced by the methods in Part 1.

Chapter 5 Solutions

An Introduction to Mathematical Statistics and Its Applications (6th Edition)

Ch. 5.2 - Find the maximum likelihood estimate for in the...Ch. 5.2 - A random sample of size n is taken from the pdf...Ch. 5.2 - If the random variable Y denotes an individuals...Ch. 5.2 - For the negative binomial pdf...Ch. 5.2 - The exponential pdf is a measure of lifetimes of...Ch. 5.2 - Suppose a random sample of size n is drawn from a...Ch. 5.2 - Let y1,y2,...,yn be a random sample of size n from...Ch. 5.2 - Prob. 18QCh. 5.2 - A criminologist is searching through FBI files to...Ch. 5.2 - Prob. 20QCh. 5.2 - Suppose that Y1=8.3,Y2=4.9,Y3=2.6, and Y4=6.5 is a...Ch. 5.2 - Find a formula for the method of moments estimate...Ch. 5.2 - Calculate the method of moments estimate for the...Ch. 5.2 - Find the method of moments estimates for and 2,...Ch. 5.2 - Use the method of moments to derive estimates for...Ch. 5.2 - Bird songs can be characterized by the number of...Ch. 5.2 - Prob. 27QCh. 5.3 - A commonly used IQ test is scaled to have a mean...Ch. 5.3 - The production of a nationally marketed detergent...Ch. 5.3 - Mercury pollution is widely recognized as a...Ch. 5.3 - A physician who has a group of thirty-eight female...Ch. 5.3 - Suppose a sample of size n is to be drawn from a...Ch. 5.3 - What confidence would be associated with each of...Ch. 5.3 - Five independent samples, each of size n, are to...Ch. 5.3 - Suppose that y1,y2,...,yn is a random sample of...Ch. 5.3 - If the standard deviation () associated with the...Ch. 5.3 - In 1927, the year he hit sixty home runs, Babe...Ch. 5.3 - A thirty-second commercial break during the...Ch. 5.3 - During one of the first beer wars in the early...Ch. 5.3 - The Pew Research Center did a survey of 2253...Ch. 5.3 - If (0.57,0.63) is a 50% confidence interval for p,...Ch. 5.3 - Suppose a coin is to be tossed n times for the...Ch. 5.3 - On the morning of November 9, 1994the day after...Ch. 5.3 - Which of the following two intervals has the...Ch. 5.3 - Prob. 18QCh. 5.3 - Prob. 19QCh. 5.3 - Prob. 20QCh. 5.3 - Prob. 21QCh. 5.3 - A public health official is planning for the...Ch. 5.3 - Prob. 23QCh. 5.3 - Given that a political poll shows that 52% of the...Ch. 5.3 - Prob. 25QCh. 5.3 - Suppose that p is to be estimated by Xn and we are...Ch. 5.3 - Let p denote the true proportion of college...Ch. 5.3 - Prob. 28QCh. 5.4 - Two chips are drawn without replacement from an...Ch. 5.4 - Suppose a random sample of size n=6 is drawn from...Ch. 5.4 - Prob. 3QCh. 5.4 - A sample of size n=16 is drawn from a normal...Ch. 5.4 - Suppose X1,X2,...,Xn is a random sample of size n...Ch. 5.4 - Prob. 6QCh. 5.4 - Let Y be the random variable described in Example...Ch. 5.4 - Suppose that 14, 10, 18, and 21 constitute a...Ch. 5.4 - A random sample of size 2, Y1 and Y2, is drawn...Ch. 5.4 - A sample of size 1 is drawn from the uniform pdf...Ch. 5.4 - Suppose that W is an unbiased estimator for . Can...Ch. 5.4 - We showed in Example 5.4.4 that 2=1ni=1n(YiY)2 is...Ch. 5.4 - As an alternative to imposing unbiasedness, an...Ch. 5.4 - Let Y1,Y2,...,Yn be a random sample of size n from...Ch. 5.4 - An estimator n=h(W1,...,Wn) is said to be...Ch. 5.4 - Is the maximum likelihood estimator for 2 in a...Ch. 5.4 - Let X1,X2,...,Xn denote the outcomes of a series...Ch. 5.4 - Suppose that n=5 observations are taken from the...Ch. 5.4 - Let Y1,Y2,...,Yn be a random sample of size n from...Ch. 5.4 - Given a random sample of size n from a Poisson...Ch. 5.4 - If Y1,Y2,...,Yn are random observations from a...Ch. 5.4 - Suppose that W1 is a random variable with mean ...Ch. 5.5 - Let Y1,Y2,...,Yn be a random sample from...Ch. 5.5 - Let X1,X2,...,Xn be a random sample of size n from...Ch. 5.5 - Suppose a random sample of size n is taken from a...Ch. 5.5 - Let Y1,Y2,...,Yn be a random sample from the...Ch. 5.5 - Prob. 5QCh. 5.5 - Let Y1,Y2,...,Yn be a random sample of size n from...Ch. 5.5 - Prove the equivalence of the two forms given for...Ch. 5.6 - Let X1,X2,...,Xn be a random sample of size n from...Ch. 5.6 - Let X1,X2, and X3 be a set of three independent...Ch. 5.6 - If is sufficient for , show that any one-to-one...Ch. 5.6 - Show that 2=i=1nYi2 is sufficient for 2 if...Ch. 5.6 - Let Y1,Y2,...,Yn be a random sample of size n from...Ch. 5.6 - Let Y1,Y2,...,Yn be a random sample of size n from...Ch. 5.6 - Suppose a random sample of size n is drawn from...Ch. 5.6 - Suppose a random sample of size n is drawn from...Ch. 5.6 - Prob. 9QCh. 5.6 - Prob. 10QCh. 5.6 - Prob. 11QCh. 5.7 - How large a sample must be taken from a normal pdf...Ch. 5.7 - Let Y1,Y2,...,Yn be a random sample of size n from...Ch. 5.7 - Suppose Y1,Y2,...,Yn is a random sample from the...Ch. 5.7 - An estimator n is said to be squared-error...Ch. 5.7 - Suppose n=Ymax is to be used as an estimator for...Ch. 5.7 - Prob. 6QCh. 5.8 - Prob. 1QCh. 5.8 - Find the squared-error loss [L(,)=()2] Bayes...Ch. 5.8 - Prob. 3QCh. 5.8 - Prob. 4QCh. 5.8 - Prob. 5QCh. 5.8 - Suppose that Y is a gamma random variable with...Ch. 5.8 - Prob. 7QCh. 5.8 - Find the squared-error loss Bayes estimate for in...Ch. 5.8 - Prob. 9Q
Knowledge Booster
Background pattern image
Statistics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Algebra
Algebra
ISBN:9781938168383
Author:Jay Abramson
Publisher:OpenStax
Text book image
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning
Text book image
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Text book image
College Algebra
Algebra
ISBN:9781305115545
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Text book image
College Algebra
Algebra
ISBN:9781337282291
Author:Ron Larson
Publisher:Cengage Learning
Text book image
Functions and Change: A Modeling Approach to Coll...
Algebra
ISBN:9781337111348
Author:Bruce Crauder, Benny Evans, Alan Noell
Publisher:Cengage Learning
Finding Local Maxima and Minima by Differentiation; Author: Professor Dave Explains;https://www.youtube.com/watch?v=pvLj1s7SOtk;License: Standard YouTube License, CC-BY