
(a)
To find: The
(a)

Answer to Problem 78E
Solution: The mean and standard deviation of the binomial random variable X is 996 and 13.012 respectively.
Explanation of Solution
Calculation: In binomial distribution, the mean can be calculated by this formula,
In binomial distribution, standard deviation can be calculated by this formula,
Where, n is the number of trials and p is the
The standard deviation is calculated as:
Hence, the average value and standard deviation are 996 and 13.012 respectively.
(b)
To find: The probability.
(b)

Answer to Problem 78E
Solution: The probability is
Explanation of Solution
Calculation: The binomial random variable approximately follows the
Therefore, the random variable X can be approximated to normal distribution because the given condition is fulfilled.
The parameters of the normal distribution are calculated as follows:
And:
The probability that the value taken by X is greater than or equal to 800 is the area right to the point 800 under the normal curve. To obtain the area lying to the left of a point under the normal curve, first, convert the value of the variable into Z-score and then obtain the area lying to the right by subtracting the area left to the Z-score from 1. The Z-score for the value
The area left to the particular Z-score can be obtained using Excel by using the command
The area left to the Z-score,
So, the required probability can be calculated as:
Hence, the probability is 1.
(c)
To find: The probability.
(c)

Answer to Problem 78E
Solution:
Explanation of Solution
Calculation: For the probability that more than 1000 candidates will accept the admission, Excel has to be used. The following procedure is followed in Excel:
Step 1: Open the Excel spreadsheet.
Step 2: Type the command
Therefore, the required probability is calculated as:
Hence, the probability is 0.3676.
(d)
To find: The probability.
(d)

Answer to Problem 78E
Solution:
Explanation of Solution
Calculation: The probability that more than 1000 candidates will accept the admission, Excel has to be used. The following procedure is followed in Excel:
Step 1: Open the Excel spreadsheet.
Step 2: Type the command
Therefore, the required probability is calculated as:
Hence, the probability is 0.0001.
Want to see more full solutions like this?
Chapter 5 Solutions
Introduction to the Practice of Statistics
- Please help me with this statistics questionarrow_forwardPlease help me with the following statistics questionFor question (e), the options are:Assuming that the null hypothesis is (false/true), the probability of (other populations of 150/other samples of 150/equal to/more data/greater than) will result in (stronger evidence against the null hypothesis than the current data/stronger evidence in support of the null hypothesis than the current data/rejecting the null hypothesis/failing to reject the null hypothesis) is __.arrow_forwardPlease help me with the following question on statisticsFor question (e), the drop down options are: (From this data/The census/From this population of data), one can infer that the mean/average octane rating is (less than/equal to/greater than) __. (use one decimal in your answer).arrow_forward
- Help me on the following question on statisticsarrow_forward3. [15] The joint PDF of RVS X and Y is given by fx.x(x,y) = { x) = { c(x + { c(x+y³), 0, 0≤x≤ 1,0≤ y ≤1 otherwise where c is a constant. (a) Find the value of c. (b) Find P(0 ≤ X ≤,arrow_forwardNeed help pleasearrow_forward7. [10] Suppose that Xi, i = 1,..., 5, are independent normal random variables, where X1, X2 and X3 have the same distribution N(1, 2) and X4 and X5 have the same distribution N(-1, 1). Let (a) Find V(X5 - X3). 1 = √(x1 + x2) — — (Xx3 + x4 + X5). (b) Find the distribution of Y. (c) Find Cov(X2 - X1, Y). -arrow_forward1. [10] Suppose that X ~N(-2, 4). Let Y = 3X-1. (a) Find the distribution of Y. Show your work. (b) Find P(-8< Y < 15) by using the CDF, (2), of the standard normal distribu- tion. (c) Find the 0.05th right-tail percentage point (i.e., the 0.95th quantile) of the distri- bution of Y.arrow_forward6. [10] Let X, Y and Z be random variables. Suppose that E(X) = E(Y) = 1, E(Z) = 2, V(X) = 1, V(Y) = V(Z) = 4, Cov(X,Y) = -1, Cov(X, Z) = 0.5, and Cov(Y, Z) = -2. 2 (a) Find V(XY+2Z). (b) Find Cov(-x+2Y+Z, -Y-2Z).arrow_forward1. [10] Suppose that X ~N(-2, 4). Let Y = 3X-1. (a) Find the distribution of Y. Show your work. (b) Find P(-8< Y < 15) by using the CDF, (2), of the standard normal distribu- tion. (c) Find the 0.05th right-tail percentage point (i.e., the 0.95th quantile) of the distri- bution of Y.arrow_forward== 4. [10] Let X be a RV. Suppose that E[X(X-1)] = 3 and E(X) = 2. (a) Find E[(4-2X)²]. (b) Find V(-3x+1).arrow_forward2. [15] Let X and Y be two discrete RVs whose joint PMF is given by the following table: y Px,y(x, y) -1 1 3 0 0.1 0.04 0.02 I 2 0.08 0.2 0.06 4 0.06 0.14 0.30 (a) Find P(X ≥ 2, Y < 1). (b) Find P(X ≤Y - 1). (c) Find the marginal PMFs of X and Y. (d) Are X and Y independent? Explain (e) Find E(XY) and Cov(X, Y).arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- MATLAB: An Introduction with ApplicationsStatisticsISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncProbability and Statistics for Engineering and th...StatisticsISBN:9781305251809Author:Jay L. DevorePublisher:Cengage LearningStatistics for The Behavioral Sciences (MindTap C...StatisticsISBN:9781305504912Author:Frederick J Gravetter, Larry B. WallnauPublisher:Cengage Learning
- Elementary Statistics: Picturing the World (7th E...StatisticsISBN:9780134683416Author:Ron Larson, Betsy FarberPublisher:PEARSONThe Basic Practice of StatisticsStatisticsISBN:9781319042578Author:David S. Moore, William I. Notz, Michael A. FlignerPublisher:W. H. FreemanIntroduction to the Practice of StatisticsStatisticsISBN:9781319013387Author:David S. Moore, George P. McCabe, Bruce A. CraigPublisher:W. H. Freeman





