Matrices are commonly used to encrypt data. Here is a simple form such an encryption can take. First, we represent each letter in the alphabet by a number, so let us take < space > = 0, A = 1, B = 2, and so on. Thus, for example, "ABORT MISSION" becomes [1  2  15  18  20  0  13  9  19  19  9  15  14]. To encrypt this coded phrase, we use an invertible matrix of any size with integer entries. For instance, let us take A to be the 2 × 2 matrix    1 2   4 3 .  We can first arrange the coded sequence of numbers in the form of a matrix with two rows (using zero in the last place if we have an odd number of characters) and then multiply on the left by A. Encrypted Matrix  =    1 2   4 3   1 15 20 13 19 9 14   2 18 0 9 19 15 0    =    5 51 20 31 57 39 14   10 114 80 79 133 81 56 , which we can also write as [5  10  51  114  20  80  31  79  57  133  39  81  14  56]. To decipher the encoded message, multiply the encrypted matrix by  A−1.  The following exercise uses the above matrix A for encoding and decoding.Use the matrix A to encode the phrase "GO TO PLAN B".

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Topic Video
Question

Matrices are commonly used to encrypt data. Here is a simple form such an encryption can take. First, we represent each letter in the alphabet by a number, so let us take < space > = 0, A = 1, B = 2, and so on. Thus, for example, "ABORT MISSION" becomes

[1  2  15  18  20  0  13  9  19  19  9  15  14].

To encrypt this coded phrase, we use an invertible matrix of any size with integer entries. For instance, let us take A to be the 2 × 2 matrix 

 
1 2
 
4 3
.

 We can first arrange the coded sequence of numbers in the form of a matrix with two rows (using zero in the last place if we have an odd number of characters) and then multiply on the left by A.

Encrypted Matrix  = 
 
1 2
 
4 3
 
1 15 20 13 19 9 14
 
2 18 0 9 19 15 0
   = 
 
5 51 20 31 57 39 14
 
10 114 80 79 133 81 56
,

which we can also write as

[5  10  51  114  20  80  31  79  57  133  39  81  14  56].

To decipher the encoded message, multiply the encrypted matrix by 

A−1.

 The following exercise uses the above matrix A for encoding and decoding.

Use the matrix A to encode the phrase "GO TO PLAN B".

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 3 images

Blurred answer
Knowledge Booster
Permutation and Combination
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,