Orthogonal and Orthonormal Sets In Exercises 1-12, (a) determine whether the set of
Trending nowThis is a popular solution!
Chapter 5 Solutions
Elementary Linear Algebra (MindTap Course List)
- Orthogonal and Orthonormal SetsIn Exercises 1-12, a determine whether the set of vectors in Rnis orthogonal, b if the set is orthogonal, then determine whether it is also orthonormal, and c determine whether the set is a basis for Rn. {(2,4),(2,1)}arrow_forwardProof Prove that if S={v1,v2,,vn} is a basis for a vector space V and c is a nonzero scalar, then the set S1={cv1,cv2,,cvn} is also a basis for V.arrow_forwardLet v1, v2, and v3 be three linearly independent vectors in a vector space V. Is the set {v12v2,2v23v3,3v3v1} linearly dependent or linearly independent? Explain.arrow_forward
- Explaining Why a Set Is Not a BasisIn Exercises 23-30, explain why S is not a basis for P2. S={1,2x,4+x2,5x}arrow_forwardProof When V is spanned by {v1,v2,...,vk} and one of these vector can be written as a linear combination of the other k1 vectors, prove that the span of these k1 vector is also V.arrow_forwardIllustrate properties 110 of Theorem 4.2 for u=(2,1,3,6), v=(1,4,0,1), w=(3,0,2,0), c=5, and d=2. THEOREM 4.2Properties of Vector Addition and Scalar Multiplication in Rn. Let u,v, and w be vectors in Rn, and let c and d be scalars. 1. u+v is vector in Rn. Closure under addition 2. u+v=v+u Commutative property of addition 3. (u+v)+w=u+(v+w) Associative property of addition 4. u+0=u Additive identity property 5. u+(u)=0 Additive inverse property 6. cu is a vector in Rn. Closure under scalar multiplication 7. c(u+v)=cu+cv Distributive property 8. (c+d)u=cu+du Distributive property 9. c(du)=(cd)u Associative property of multiplication 10. 1(u)=u Multiplicative identity propertyarrow_forward
- Elementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning