DISCRETE MATH CONNECT ACCESS
8th Edition
ISBN: 9781265370749
Author: ROSEN
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 5.3, Problem 53E
To determine
(a)
The values of Ackermann’s function A(2,3)
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
m6
Decoding Messages If we assign numbers to theletters of the alphabet as follows and assign 27 to ablank space, we can convert a message to a numericalsequence. We can “encode” a message by adding 3 toeach number that represents a letter in a message.
Thus, the message “Go for it” can be encoded byusing the numbers to represent the letters and furtherencoded by using the function C(x) = x + 3. Thecoded message would be 10 18 30 9 18 21 30 12 23.Find the inverse of the function and use it to decode23 11 8 30 21 8 4 15 30 23 11 12 17 10.
Consider the function that assigns each positive integer to its FIRST (leading) digit. (For example, the positive integer 517 gets assigned to 5).
Question 1: What is the domain of this function?
Question 2: What is the range of this function? (note I am not asking for the co-domain here) Please use either the roster method or set-builder notation for your response.
Question 3: Is this function injective? (yes or no)
Chapter 5 Solutions
DISCRETE MATH CONNECT ACCESS
Ch. 5.1 - re are infinite]y many stations on a train route....Ch. 5.1 - pose that you know that a golfer plays theho1e of...Ch. 5.1 - P(n) be the statement...Ch. 5.1 - P(n) be the statementthat 13+ 23+ ... + n3=...Ch. 5.1 - ve...Ch. 5.1 - ve that1.1!+2.2!+...n.n!=(n+1)!1whenevernis a...Ch. 5.1 - ve that3+3.5+3.52+...+3.5n=3(5n+11)/4whenevernis a...Ch. 5.1 - ve that22.7+2.72...+2(7)n=(1(7)n+1)/4whenevernis a...Ch. 5.1 - a)Find a formula for the sum of the firstneven...Ch. 5.1 - a) Find a formula for 112+123++1m(n+1) by...
Ch. 5.1 - a) Find a formula for 12+14+18+...+12n by...Ch. 5.1 - ve that j=0n(12)=2n+1+(1)n32n whenevernis a...Ch. 5.1 - ve that1222+32...+(1)n1n2=(1)n1n(n+1)/2whenevernis...Ch. 5.1 - ve that for every positive...Ch. 5.1 - ve that for every positive integern,...Ch. 5.1 - ve that for every positive integern,...Ch. 5.1 - ve thatj=1nj4=n(n+1)(2n+1)(3n2+3n1)/30whenevernis...Ch. 5.1 - P(n) be the statement thatn!< nn, where n is an...Ch. 5.1 - P(n)be tie statement that 1+14+19+...+1n221n,...Ch. 5.1 - ve that3nn!if n is an integer greater than6.Ch. 5.1 - ve that2nn2ifnis an integer greater than 4.Ch. 5.1 - Prob. 22ECh. 5.1 - which nonnegative integersnis2n+32n?Prove your...Ch. 5.1 - ve that1/(2n)[1.3.5..(2n1)]/(2.4....2n)whenevernis...Ch. 5.1 - ve that ifhi,then1+nh(1+h)nfor all nonnegative...Ch. 5.1 - pose that a and b are real numbers with o< b< a....Ch. 5.1 - ve that for every positive integern,...Ch. 5.1 - ve thatn27n+12is nonnegative whenevernis an...Ch. 5.1 - Prob. 29ECh. 5.1 - ve that H1+H2+...+Hn=(n+1)HnnCh. 5.1 - mathematical induction in Exercises 31-37 to prove...Ch. 5.1 - mathematical induction in Exercises 31-37 to prove...Ch. 5.1 - mathematical induction in Exercises 31-37 to prove...Ch. 5.1 - mathematical induction in Exercises 31-37 to prove...Ch. 5.1 - mathematical induction in Exercises 31-37 to prove...Ch. 5.1 - mathematical induction in Exercises 31-37 to prove...Ch. 5.1 - Prob. 37ECh. 5.1 - Prob. 38ECh. 5.1 - Prob. 39ECh. 5.1 - mathematical induction in Exercises 38-46 to prove...Ch. 5.1 - mathematical induction in Exercises 38-46 to prove...Ch. 5.1 - mathematical induction in Exercises 38-46 to prove...Ch. 5.1 - Prob. 43ECh. 5.1 - mathematical induction in Exercises 38-46 to prove...Ch. 5.1 - mathematical induction in Exercises 38-46 to prove...Ch. 5.1 - mathematical induction in Exercises 38-46 to prove...Ch. 5.1 - Exercises 47 and 48 we consider the problem of...Ch. 5.1 - In Exercises 47 and 48 we consider the problem of...Ch. 5.1 - rcises 49-51 present incorrect proofs using...Ch. 5.1 - Exercises 49-51 present incorrect proofs using...Ch. 5.1 - rcises 49-51 present incorrect proofs using...Ch. 5.1 - pose thatmandnare positive integers withm >nandfis...Ch. 5.1 - Prob. 53ECh. 5.1 - mathematical induction to show that given a set...Ch. 5.1 - Prob. 55ECh. 5.1 - Prob. 56ECh. 5.1 - 57.(Requires calculus) use mathematical induction...Ch. 5.1 - pose that A and B are square matrices with the...Ch. 5.1 - Prob. 59ECh. 5.1 - Prob. 60ECh. 5.1 - Prob. 61ECh. 5.1 - w that n lines separate the plane into (n2+n+ 2)/...Ch. 5.1 - A=(a1+a2+...+an)/nG= and the geometric mean of...Ch. 5.1 - Prob. 64ECh. 5.1 - Prob. 65ECh. 5.1 - Prob. 66ECh. 5.1 - Prob. 67ECh. 5.1 - Prob. 68ECh. 5.1 - pose there arenpeople in a group, each aware of a...Ch. 5.1 - pose there arenpeople in a group, each aware of a...Ch. 5.1 - Prob. 71ECh. 5.1 - pose there arenpeople in a group, each aware of a...Ch. 5.1 - Prob. 73ECh. 5.1 - etimes ire cannot use mathematical induction to...Ch. 5.1 - Prob. 75ECh. 5.1 - etimes we cannot use mathematical induction to...Ch. 5.1 - nbe an even integer. Show that it is people to...Ch. 5.1 - Prob. 78ECh. 5.1 - .Construct a ling using right triominoes of the 8...Ch. 5.1 - ve or disprovethatall checkerboards of these...Ch. 5.1 - w that a three-dimensional2n2n2ncheckerboard with...Ch. 5.1 - w that annncheckerboard with on square removed can...Ch. 5.1 - w that acheckerboard with a corner square removed...Ch. 5.1 - Prob. 84ECh. 5.1 - Prob. 85ECh. 5.2 - Use strong induction to show that if you can run...Ch. 5.2 - strong induction to show that all dominoes fall in...Ch. 5.2 - P(n)be the statement that a postage ofncents can...Ch. 5.2 - P(n)be the statement that a postage of n cents can...Ch. 5.2 - a)Determine which amounts of postage can be formed...Ch. 5.2 - a)Determine which amounts of postage can be formed...Ch. 5.2 - ch amount of money can b formed using just two...Ch. 5.2 - pose that a store offers gift certificates in...Ch. 5.2 - song induction to prove that2is irrational. [Hint:...Ch. 5.2 - Assume that a chocolate bar consists ofnsquares...Ch. 5.2 - sider this variation of the game of Nim. The game...Ch. 5.2 - . Use strong induction to show that every positive...Ch. 5.2 - A jigsaw puzzle is put together by successively...Ch. 5.2 - Supposeyou begin with apile ofnstones and split...Ch. 5.2 - Prob. 15ECh. 5.2 - ve that the first player has a winning strategy...Ch. 5.2 - strong induction to show that if a simple polygon...Ch. 5.2 - strong induction to show that a simple po1gonPwith...Ch. 5.2 - Prob. 19ECh. 5.2 - Prob. 20ECh. 5.2 - the proof ofLemma 1we mentioned that many...Ch. 5.2 - rcises 22 and 23 present examples that show...Ch. 5.2 - Prob. 23ECh. 5.2 - Prob. 24ECh. 5.2 - pose thatP(n) is a propositional function....Ch. 5.2 - pose that ifp(n) is a propositional function....Ch. 5.2 - w that if the statement is for infinitely many...Ch. 5.2 - bbe a fix integer and a fixed positive integer....Ch. 5.2 - Prob. 29ECh. 5.2 - d the flaw with the following "proof" thatan=1 for...Ch. 5.2 - w that strong induction is a valid method of proof...Ch. 5.2 - Prob. 32ECh. 5.2 - Prob. 33ECh. 5.2 - ve that (math) for all positive integerskandn,...Ch. 5.2 - Prob. 35ECh. 5.2 - well-orderingproperty can be used to show that...Ch. 5.2 - a be an integer and b be a positive integer. Show...Ch. 5.2 - Prob. 38ECh. 5.2 - you u se th e well - ord ering pr operty to pr o v...Ch. 5.2 - Prob. 40ECh. 5.2 - w that the well-ordering property can be proved...Ch. 5.2 - w that principle of mathematical induction and...Ch. 5.2 - Prob. 43ECh. 5.3 - Findf(1),f(2),f(3), andf(4) iff(n) is defined...Ch. 5.3 - Findf(1),f(2),f(3),f(4), andf(5)iff(n)is defined...Ch. 5.3 - LetP(n) bethestatementthata postage ofncents can...Ch. 5.3 - Prob. 4ECh. 5.3 - Determine which amounts of postage can be formed...Ch. 5.3 - Determine which amounts of postage can be formed...Ch. 5.3 - e a recursive definition of the...Ch. 5.3 - Give a recursive definition of the sequence...Ch. 5.3 - Fbe the function such thatF(n) is the sum of the...Ch. 5.3 - en a recursive definition ofsm(n), the sum of the...Ch. 5.3 - e a recursive definition ofPm(n), the product of...Ch. 5.3 - Exercises 12—19fnis the nth Fibonacci 12.Prove...Ch. 5.3 - Exercises1219fnis the nth Fibonacci number....Ch. 5.3 - Exercises 12—l9fnis the nth Fibonacci *14.Show...Ch. 5.3 - Prob. 15ECh. 5.3 - Prob. 16ECh. 5.3 - Exercises 12-19fnis thenthFibonacci number....Ch. 5.3 - Exercises 12-19fnis thenthFibonacci number. 18....Ch. 5.3 - Prob. 19ECh. 5.3 - e a recursive definition of the if functions max...Ch. 5.3 - Prob. 21ECh. 5.3 - Prob. 22ECh. 5.3 - Prob. 23ECh. 5.3 - e a recursive definition of a)the set of odd...Ch. 5.3 - e a recursive definition of a)the set of even...Ch. 5.3 - Sbe the set of positive integers defined by Basis...Ch. 5.3 - Sbe the set of positive integers defined by Basis...Ch. 5.3 - Sbe the subset of the set of ordered pairs of...Ch. 5.3 - Sbe the subset of the set of ordered pairs of...Ch. 5.3 - e a recursive definition of each ofthesesets of...Ch. 5.3 - e arecursive definition of each of these sets of...Ch. 5.3 - ve that in a bit string, the string 01 occurs at...Ch. 5.3 - ine well-formed formulae of sets, variables...Ch. 5.3 - Prob. 34ECh. 5.3 - Give a recursive definition of the...Ch. 5.3 - d the reversal of the following bit strings....Ch. 5.3 - e a recursive definition of the reversal of a...Ch. 5.3 - structural induction to prove that(w1w2)R=w2Rw1R.Ch. 5.3 - Prob. 39ECh. 5.3 - the well-ordermg property to show that ifxandyare...Ch. 5.3 - n does a swing belong to eset Aof bit stings...Ch. 5.3 - ursively define the set of bit strings that have...Ch. 5.3 - Prob. 43ECh. 5.3 - Prob. 44ECh. 5.3 - structural induction to show thatn(T)>&[I)+inhere...Ch. 5.3 - Prob. 46ECh. 5.3 - Prob. 47ECh. 5.3 - generalized induction as was doneinExample 13to...Ch. 5.3 - A partition of a positive integer nis amy to...Ch. 5.3 - Prob. 50ECh. 5.3 - sider the Mowing inductive definition of a version...Ch. 5.3 - Prob. 52ECh. 5.3 - Prob. 53ECh. 5.3 - sider the Mowing inductive definition of a version...Ch. 5.3 - sider the Mowing inductive definition of a version...Ch. 5.3 - Prob. 56ECh. 5.3 - sider the Mowing inductive definition of a version...Ch. 5.3 - Prob. 58ECh. 5.3 - Prob. 59ECh. 5.3 - Prob. 60ECh. 5.3 - Prob. 61ECh. 5.3 - rcises 62-64 deal with iterations of the logarithm...Ch. 5.3 - rcises 62-64 deal with iterations of the logarithm...Ch. 5.3 - Prob. 64ECh. 5.3 - Prob. 65ECh. 5.3 - f(n)=n/2.Find a formula forf(k)(n).What is the...Ch. 5.3 - Prob. 67ECh. 5.4 - ce Algorithm 1when it is givenn= 5 as input, That...Ch. 5.4 - Prob. 2ECh. 5.4 - Prob. 3ECh. 5.4 - Prob. 4ECh. 5.4 - ce Algorithm 4 when it is given In=5,n= 11, andb=3...Ch. 5.4 - ce Algorithm 4 when it ism=7,n=10, andb=2 as...Ch. 5.4 - Prob. 7ECh. 5.4 - e a recursive algorithm for finding the sum of the...Ch. 5.4 - Prob. 9ECh. 5.4 - e a recursive algorithm for finding the maximum of...Ch. 5.4 - Prob. 11ECh. 5.4 - ise a recursive algorithm for...Ch. 5.4 - e a recursive algorithm for...Ch. 5.4 - Give a recursive algorithm for finding mode of a...Ch. 5.4 - ise a recursive algorithm for computing the...Ch. 5.4 - ve that the recursive algorithm for finding the...Ch. 5.4 - Prob. 17ECh. 5.4 - ve that Algorithm 1 for computingn! whennis a...Ch. 5.4 - Prob. 19ECh. 5.4 - Prob. 20ECh. 5.4 - Prob. 21ECh. 5.4 - ve that the recursive algorithm that you found in...Ch. 5.4 - ise a recursive algorithm for computing for...Ch. 5.4 - ise a recursive algorithm to finda2n, whereais a...Ch. 5.4 - Prob. 25ECh. 5.4 - the algorithm in Exercise 24 to devise an...Ch. 5.4 - does the number of multiplication used by the...Ch. 5.4 - many additions are used by the recursive and...Ch. 5.4 - ise a recursive algorithm to find thenthterm of...Ch. 5.4 - ise an iterative algorithm to find the nth term of...Ch. 5.4 - Prob. 31ECh. 5.4 - ise a recursive algorithm to find the nth term of...Ch. 5.4 - Prob. 33ECh. 5.4 - the recursive or the iterative algorithm for...Ch. 5.4 - Prob. 35ECh. 5.4 - Prob. 36ECh. 5.4 - e algorithm for finding the reversal of a bit...Ch. 5.4 - Prob. 38ECh. 5.4 - Prob. 39ECh. 5.4 - ve that the recursive algorithm for finding the...Ch. 5.4 - Prob. 41ECh. 5.4 - Prob. 42ECh. 5.4 - Prob. 43ECh. 5.4 - a merge sort to sort 4.3,2,5, i, 8, 7, 6 into...Ch. 5.4 - Prob. 45ECh. 5.4 - many comparisons are required to merge these pairs...Ch. 5.4 - Prob. 47ECh. 5.4 - What theleast number comparisons needed to merge...Ch. 5.4 - ve that the merge sort algorithm is correct.Ch. 5.4 - Prob. 50ECh. 5.4 - Prob. 51ECh. 5.4 - quick sort is an efficient algorithm. To...Ch. 5.4 - Prob. 53ECh. 5.4 - Prob. 54ECh. 5.4 - Prob. 55ECh. 5.5 - ve that the program segment y:=1z:=x+y is correct...Ch. 5.5 - ify that the program segment ifx0thenx:=0 is...Ch. 5.5 - ify that the progr am segment is correct with...Ch. 5.5 - Prob. 4ECh. 5.5 - ise a rule of inference for verification of...Ch. 5.5 - the rule of inference developed in Exercise 5 to...Ch. 5.5 - Prob. 7ECh. 5.5 - Prob. 8ECh. 5.5 - Prob. 9ECh. 5.5 - Prob. 10ECh. 5.5 - Prob. 11ECh. 5.5 - Prob. 12ECh. 5.5 - a loop invariant to verify thattheEuclidean...Ch. 5 - Can you use theprinciple of mathematical induction...Ch. 5 - a) For which positive integersnis iin+ 17 S b)...Ch. 5 - Which amounts of postage can be formed using only...Ch. 5 - e two different examples of proofs that use strong...Ch. 5 - a) State the well-ordering property for the set of...Ch. 5 - Prob. 6RQCh. 5 - Prob. 7RQCh. 5 - Prob. 8RQCh. 5 - Prob. 9RQCh. 5 - Prob. 10RQCh. 5 - Prob. 11RQCh. 5 - Prob. 12RQCh. 5 - Prob. 13RQCh. 5 - Prob. 14RQCh. 5 - Prob. 15RQCh. 5 - Prob. 16RQCh. 5 - Prob. 1SECh. 5 - Prob. 2SECh. 5 - mathematica1 induction to show...Ch. 5 - Prob. 4SECh. 5 - Prob. 5SECh. 5 - mathematical induction to show...Ch. 5 - Prob. 7SECh. 5 - d an integ N such that2nn4whenevernan integer...Ch. 5 - Prob. 9SECh. 5 - Prob. 10SECh. 5 - Prob. 11SECh. 5 - Prob. 12SECh. 5 - Prob. 13SECh. 5 - Prob. 14SECh. 5 - Prob. 15SECh. 5 - Prob. 16SECh. 5 - Prob. 17SECh. 5 - Prob. 18SECh. 5 - mulate a conjecture about which Fibonacci nubs are...Ch. 5 - Prob. 20SECh. 5 - Prob. 21SECh. 5 - w thatfn+fn+2=ln+1whenevernis a positive integer,...Ch. 5 - Prob. 23SECh. 5 - Prob. 24SECh. 5 - Prob. 25SECh. 5 - Prob. 26SECh. 5 - Prob. 27SECh. 5 - (Requires calculus)Suppose that the...Ch. 5 - w ifnis a positive integer withn>2, then...Ch. 5 - Prob. 30SECh. 5 - Prob. 31SECh. 5 - (Requires calculus) Use mathematical induction and...Ch. 5 - Prob. 33SECh. 5 - Prob. 34SECh. 5 - Prob. 35SECh. 5 - mathematical induction to prove that ifx1,x2,...Ch. 5 - mathematical induction to prove that ifnpeople...Ch. 5 - pose that for every pair of cities in a country...Ch. 5 - Prob. 39SECh. 5 - Prob. 40SECh. 5 - Prob. 41SECh. 5 - Prob. 42SECh. 5 - Use mathematical induction to show that ifnis a...Ch. 5 - Prob. 44SECh. 5 - Prob. 45SECh. 5 - Prob. 46SECh. 5 - Prob. 47SECh. 5 - Prob. 48SECh. 5 - Prob. 49SECh. 5 - w thatnplanes divide three-dimensional...Ch. 5 - Prob. 51SECh. 5 - Prob. 52SECh. 5 - Prob. 53SECh. 5 - Prob. 54SECh. 5 - Prob. 55SECh. 5 - Prob. 56SECh. 5 - Prob. 57SECh. 5 - Prob. 58SECh. 5 - Prob. 59SECh. 5 - d all balanced string of parentheses with exactly...Ch. 5 - Prob. 61SECh. 5 - Prob. 62SECh. 5 - Prob. 63SECh. 5 - Prob. 64SECh. 5 - e a recursive algorithm for finding all balanced...Ch. 5 - Prob. 66SECh. 5 - Prob. 67SECh. 5 - Prob. 68SECh. 5 - Prob. 69SECh. 5 - Prob. 70SECh. 5 - Prob. 71SECh. 5 - Prob. 72SECh. 5 - Prob. 73SECh. 5 - Prob. 74SECh. 5 - Prob. 75SECh. 5 - Prob. 76SECh. 5 - Prob. 77SECh. 5 - Prob. 1CPCh. 5 - Prob. 2CPCh. 5 - Prob. 3CPCh. 5 - Prob. 4CPCh. 5 - Prob. 5CPCh. 5 - Prob. 6CPCh. 5 - Prob. 7CPCh. 5 - Prob. 8CPCh. 5 - Prob. 9CPCh. 5 - Prob. 10CPCh. 5 - en a nonnegative integern,find the nth Fibonacci...Ch. 5 - Prob. 12CPCh. 5 - Prob. 13CPCh. 5 - Prob. 14CPCh. 5 - en a list of integers, sort these integers using...Ch. 5 - Prob. 1CAECh. 5 - Prob. 2CAECh. 5 - Prob. 3CAECh. 5 - Prob. 4CAECh. 5 - Prob. 5CAECh. 5 - Prob. 6CAECh. 5 - Prob. 7CAECh. 5 - pare either number of operations or the needed to...Ch. 5 - cribe the origins of mathematical induction. Who...Ch. 5 - lain how to prove the Jordan curve theorem for...Ch. 5 - Prob. 3WPCh. 5 - cribe a variety of different app1icaons of the...Ch. 5 - Prob. 5WPCh. 5 - e die recursive definition of Knuth’s up-arrow...Ch. 5 - Prob. 7WPCh. 5 - lain how the ideas and concepts of program...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- 5. Let A = {a,b} and B = {1,2,3}. (a) Write out all functions f: A → Busing two-line notation. How many different functions are there, and why does this number make sense? (You might want to consider the multiplicative principle here). (b) How many of the functions are injective? How many are surjective? Identify these (circle/square the functions in your list). 6. Based on your work above, and what you know about the multiplicative principle, how many functions f:A→ B are there if |A| = 5 and [B| = 7? How many of those are injective? How many are surjective? Explain your answers.arrow_forward(a) Consider the set A = {x R x has a terminating decimal expression}. Is A countable or uncountable? Give a one-sentence justification for your answer. You can use results from the chapter notes. (b) Recall the definition of |A|=|B| for sets A and B, and use the definition to show that |N| = |{/12/2 2}\. You do not need to prove that the function you define is a bijection. : ne z}|arrow_forwardConsider a function machine that accepts inputs as ordered pairs. Suppose the components of the ordered pairs are positive real numbers and the first component is the length of a rectangle and the second is its width. The machine computes the perimeter (the distance around a figure) of the rectangle. Thus, for a rectangle whose length, L, is 3 and whose width, W, is 2, the input is (3,2) and the output is 2.3+2.2, or 10. Complete parts (a) through (c) below. L, W) Y O A. {(0,7), (1,6), (2,5), (3,4), (4,3), (5,2), (6,1), (7,0)) O B. ((0,7), (1,6), (2,5), (3,4)} O C. {(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)) O D. {(1,6), (2,5), (3,4)} c. What is the domain and range of the function? 2L + 2W a. For each of the following inputs, find the corresponding output: (1,9), (7,3), (3,7), (√5,√5). The output for (1,9) is The output for (7,3) is The output for (3,7) is The output for (√5,√5) is b. Find the set of all inputs for which the output is 14. O A. The domain of the function is R* XR* and…arrow_forward
- Consider a function machine that accepts inputs as ordered pairs. Suppose the components of the ordered pairs are positive real numbers and the first component is the length of a rectangle and the second is its width. The machine computes the perimeter (the distance around a figure) of the rectangle. Thus, for a rectangle whose length, L, is 3 and whose width, W, is 2, the input is (3,2) and the output is 2.3 +2.2, or 10. Complete parts (a) through (c) below. (L, W) A. {(0,9), (1,8), (2,7), (3,6), (4,5)} B. {(1,8), (2,7), (3,6), (4,5), (5,4), (6,3), (7,2), (8,1)} C. {(1,8), (2,7), (3,6), (4,5)} D. {(0,9), (1,8), (2,7), (3,6), (4,5), (5,4), (6,3), (7,2), (8,1), (9,0)} c. What is the domain and range of the function? 2L + 2W a. For each of the following inputs, find the corresponding output: (1,9), (7,3), (3,7), (√5,√5). The output for (1,9) is The output for (7,3) is The output for (3,7) is The output for (√5,√5) is b. Find the set of all inputs for which the output is 18. O A. The…arrow_forwardThe nth triangular number is the sum of all the integer numbers from 1 to n. For example, the triangular number of 4, T(4) is 10, because 4+3+2+1 = 10. Write a recursive function T(n) that can find the nth triangular number.arrow_forwardExer. 43-52: (a) Sketch the graph of f. (b) Find the do- main D and range R of f. (c) Find the intervals on which ƒ is increasing, is decreasing, or is constant. 1-3x 43 f(x) = 44 f(x) = 1000 45 f = |x + 3| 46 f(x)-- V10 – x² 47 f(x) = - Vx + 1 48 f(x) = V2 x %D %3D 50 f(x) = x² + 6x + 16 .2 49 f(x) = 9 – r² %D x² if x <0 51 f(x) = { 3x if 0arrow_forward#1(L) and #2(L) Only part (L)arrow_forwardFind the solution to this recursive relation an = an-1+3, a0=1arrow_forwardSubject. Date : 1- Define a Recursive function to solve the following problem: fco)-3, F(n+1)= 2f (n) +3 Use loop to implement the recuYsive Function to display the autput when takes the sertu values. 1,2;3,4.arrow_forwardClick and drag the domain and range on the left to their corresponding functions defined on the right, provided lambda (A) is the empty string. The function that assigns to each pair of positive integers the first integer of the pair Domain: Zt and range: {0, 1} The function that assigns to each positive integer its largest decimal digit Domain: Z+ and range: Z+ P The function that assigns to a bit string the number of ones minus the number of zeros in the string Domain: set of bit strings, and range: {1, 11, 111, ...} Domain: ZxZ+ and range: Z+ X The function that assigns to each positive integer the largest integer not exceeding the square root of the integer X The function that assigns to a bit string the longest string of ones in the string Domain: set of bit strings, and range: {A, 1, 11, 111, ...} Domain: Zt and range: (0, 1) Domain: Zt and range: Z Domain: set of all bit strings, and range: Z Domain: set of bit strings, and range: [1, 11, 111, ...) Domain: ZxZ+ and range: Z+…arrow_forwardPLEASE ONLY WRITE IN WOLFRAM MATHEMATICA. IT'S ABOUT NEVILLE'S ALGORITHMarrow_forwardDefine a function S: Z + --> Z+ as follows.For each positive integer n, S(n) = the sum of the positive divisors of n.(a) S(18) =?(b)S(21) =?arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningElements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Elements Of Modern Algebra
Algebra
ISBN:9781285463230
Author:Gilbert, Linda, Jimmie
Publisher:Cengage Learning,
Propositional Logic, Propositional Variables & Compound Propositions; Author: Neso Academy;https://www.youtube.com/watch?v=Ib5njCwNMdk;License: Standard YouTube License, CC-BY
Propositional Logic - Discrete math; Author: Charles Edeki - Math Computer Science Programming;https://www.youtube.com/watch?v=rL_8y2v1Guw;License: Standard YouTube License, CC-BY
DM-12-Propositional Logic-Basics; Author: GATEBOOK VIDEO LECTURES;https://www.youtube.com/watch?v=pzUBrJLIESU;License: Standard Youtube License
Lecture 1 - Propositional Logic; Author: nptelhrd;https://www.youtube.com/watch?v=xlUFkMKSB3Y;License: Standard YouTube License, CC-BY
MFCS unit-1 || Part:1 || JNTU || Well formed formula || propositional calculus || truth tables; Author: Learn with Smily;https://www.youtube.com/watch?v=XV15Q4mCcHc;License: Standard YouTube License, CC-BY