Applying the Gram-Schmidt Process In Exercises
Want to see the full answer?
Check out a sample textbook solutionChapter 5 Solutions
Bundle: Elementary Linear Algebra, Loose-leaf Version, 8th + MindTap Math, 1 term (6 months) Printed Access Card
- Let B={(0,2,2),(1,0,2)} be a basis for a subspace of R3, and consider x=(1,4,2), a vector in the subspace. a Write x as a linear combination of the vectors in B.That is, find the coordinates of x relative to B. b Apply the Gram-Schmidt orthonormalization process to transform B into an orthonormal set B. c Write x as a linear combination of the vectors in B.That is, find the coordinates of x relative to B.arrow_forwardFind an orthonormal basis for the subspace of Euclidean 3 space below. W={(x1,x2,x3):x1+x2+x3=0}arrow_forwardProof Prove that if S1 and S2 are orthogonal subspaces of Rn, then their intersection consists of only the zero vector.arrow_forward
- Find a basis for R2 that includes the vector (2,2).arrow_forwardVerifying Subspaces In Exercises 1-6, verify that W is a subspace of V. In each case assume that V has the standard operations. W is the set of all 22 matrices of the form [0ab0] V=M2,2arrow_forwardSubsets That Are Not Subspaces In Exercises 7-20 W is not a subspace of vector space. Verify this by giving a specific example that violates the test for a vector subspace Theorem 4.5. W is the set of all matrices in Mn,n with determinants equal to 1.arrow_forward
- Verifying Subspaces In Exercises 1-6, verify that W is a subspace of V. In each case assume that V has the standard operations. W is the set of all 32 matrices of the form [aba2b00c] V=M3,2arrow_forwardCalculus Use the matrix from Exercise 45 to evaluate Dx[4x3xex]. 45. Calculus Let B={1,x,ex,xex} be a basis for a subspace W of the space of continuous functions, and let Dx be the differential operator on W. Find the matrix for Dx relative to the basis B.arrow_forwardProof Prove that if S={v1,v2,,vn} is a basis for a vector space V and c is a nonzero scalar, then the set S1={cv1,cv2,,cvn} is also a basis for V.arrow_forward
- Proof Let W is a subspace of the vector space V. Prove that the zero vector in V is also the zero vector in W.arrow_forwardVerifying Subspaces In Exercises 1-6, verify that W is a subspace of V. In each case assume that V has the standard operations. W={(x,y,4x5y):xandyarerealnumbers}V=R3arrow_forwardRepeat Exercise 41 for B={(1,2,2),(1,0,0)} and x=(3,4,4). Let B={(0,2,2),(1,0,2)} be a basis for a subspace of R3, and consider x=(1,4,2), a vector in the subspace. a Write x as a linear combination of the vectors in B.That is, find the coordinates of x relative to B. b Apply the Gram-Schmidt orthonormalization process to transform B into an orthonormal set B. c Write x as a linear combination of the vectors in B.That is, find the coordinates of x relative to B.arrow_forward
- Elementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning