Mathematical Statistics with Applications
Mathematical Statistics with Applications
7th Edition
ISBN: 9780495110811
Author: Dennis Wackerly, William Mendenhall, Richard L. Scheaffer
Publisher: Cengage Learning
Question
Book Icon
Chapter 5.3, Problem 27E

a.

To determine

Find the marginal density functions for Y1 and Y2.

a.

Expert Solution
Check Mark

Answer to Problem 27E

The marginal density function for Y1 is f1(y1)=3(1y1)2,for 0y11 and the marginal density function for Y2 is f2(y2)=6y2(1y2),0y21.

Explanation of Solution

Calculation:

Consider that Y1 and Y2 are two continuous real valued random variables with joint probability density function of f(y1,y2).

Then, the marginal probability functions of Y1 and Y2 are defined as,

f1(y1)=f(y1,y2)dy2 and f2(y2)=f(y1,y2)dy1.

The range of Y1 and Y2 is given as 0y1y21. Hence, the range of Y1 is 0y1y2 and the range of Y2 is y1y21.

Hence, the marginal probability density function for Y1 is calculated below:

f1(y1)=y116(1y2)dy2=6[(1y2)22]1y1=3[(1y1)2(11)2]=3(1y1)2

Thus, the marginal density function for Y1 is f1(y1)=3(1y1)2,for 0y11.

In similar way, the marginal probability density function for Y2 is calculated below:

f2(y2)=0y26(1y2)dy1=6(1y2)[y1]0y2=6(1y2)[y20]=6y2(1y2).

Thus, the marginal density function for Y2 is f2(y2)=6y2(1y2),0y21.

b.

To determine

Find the value of P(Y212|Y134).

b.

Expert Solution
Check Mark

Answer to Problem 27E

The value of P(Y212|Y134) is 3263.

Explanation of Solution

Conditional distribution and density function:

Consider that Y1 and Y2 are two discrete real valued random variables with joint probability mass function of p(y1,y2). In addition, the marginal densities of Y1 and Y2 are f1(y1) and f2(y2), respectively.

Now, the conditional distribution function of Y1 given Y2=y2 is obtained as,

F(y1|y2)=P(Y1y1|Y2=y2).

Now, for any y2 the conditional density of Y1 given Y2=y2 is given as,

f(y1|y2)=f(y1,y2)f2(y2), where f2(y2)>0.

Similarly, for any y1 the conditional density of Y2 given Y1=y1 is given as,

f(y2|y1)=f(y1,y2)f1(y1), where f1(y1)>0.

Hence,

P(Y212|Y134)=0120y26(1y2)dy1dy20343(1y1)2dy1=6012(1y2)[0y2dy1]dy23034(12y1+y12)dy1=6012(1y2)y2dy23034(12y1+y12)dy1=2012y2dy2012y22dy2034dy12034y1dy1+034y12dy1=2[y222]012[y233]012[y]0342[y122]034+[y133]034=212[1220]13[1230][340][9160]+13[27640]=21812434916+964=21122164=(2)(64)(21)(12)=3263

Thus, value of P(Y212|Y134) is 3263.

c.

To determine

Find the conditional density function of Y1 given Y2=y2.

c.

Expert Solution
Check Mark

Answer to Problem 27E

The conditional density function of Y1 given Y2=y2 is f(y1|y2)=1y2,0y1y21.

Explanation of Solution

Calculation:

From Part (a), the marginal density function for Y2 is f2(y2)=6y2(1y2),0y21.

Hence, using the joint probability density function of Y1 and Y2 and the marginal density function of Y2, the conditional density function of Y1 given Y2=y2 is obtained below:

f(y1|y2)=6(1y2)6y2(1y2)=1y2

Thus, the conditional density function of Y1 given Y2=y2 is f(y1|y2)=1y2,0y1y21.

d.

To determine

Find the conditional density function of Y2 given Y1=y1.

d.

Expert Solution
Check Mark

Answer to Problem 27E

The conditional density function of Y2 given Y1=y1 is f(y2|y1)=2(1y2)(1y1)2,0y1y21.

Explanation of Solution

Calculation:

From Part (a), the marginal density function for Y1 is f1(y1)=3(1y1)2,for 0y11.

Hence, using the joint probability density function of Y1 and Y2 and the marginal density function of Y1, the conditional density function of Y2 given Y1=y1 is obtained below:

f(y2|y1)=6(1y2)3(1y1)2=2(1y2)(1y1)2

Thus, the conditional density function of Y2 given Y1=y1 is f(y2|y1)=2(1y2)(1y1)2,0y1y21.

e.

To determine

Find the value of P(Y234|Y1=12).

e.

Expert Solution
Check Mark

Answer to Problem 27E

The value of P(Y234|Y1=12) is 14.

Explanation of Solution

Using the joint probability density function of Y1 and Y2 and the marginal density function of Y1, the required probability is obtained below:

Hence,

P(Y234|Y1=12)=3416(1y2)dy23(112)2=8341(1y2)dy2=8341dy28341y2dy2=8[y2]3418[y222]341=8[134]4[1916]=(8)14(4)716=274=874=14

Thus, value of P(Y234|Y1=12) is 14.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The life lengths of two transistors in an electronic circuit is a random vector (X; Y) where X is the life length of transistor 1 and Y is the life length of transistor 2. The joint probability density function of (X; Y) is given by x 2 0, y 2 0 fx.,fx.v) = 20 else Then the probability that the first transistor burned during half hour given that the second one lasts at least half hour equals Select one: a. 0.606 b. 0.3935 C. 0.6318 d. 0.3669 e. 0.7772
Suppose that two continuous random variables X and Y have joint probability density function fxy = 1sxs2,0sy<3 elsewhere Find the strength of the relationship and interpret the findings.
a. The probability density function for X is f(x) = e=x , x > 0, zero, e.w. Find the probability density function of Y = (Use CDF Technique) b. Suppose that X1 ~b(5,) and X2~b(7,) are independent random variables. Let Z = X1 + X2 + 7, show that Z~b(12,). (Use MGF method)

Chapter 5 Solutions

Mathematical Statistics with Applications

Ch. 5.2 - Suppose that Y1 and Y2 are uniformly distributed...Ch. 5.2 - Prob. 12ECh. 5.2 - Prob. 13ECh. 5.2 - Prob. 14ECh. 5.2 - The management at a fast-food outlet is interested...Ch. 5.2 - Let Y1 and Y2 denote the proportions of time (out...Ch. 5.2 - Let (Y1, Y2) denote the coordinates of a point...Ch. 5.2 - Prob. 18ECh. 5.3 - In Exercise 5.1, we determined that the joint...Ch. 5.3 - Refer to Exercise 5.2. a Derive the marginal...Ch. 5.3 - In Exercise 5.3, we determined that the joint...Ch. 5.3 - In Exercise 5.4, you were given the following...Ch. 5.3 - In Example 5.4 and Exercise 5.5, we considered the...Ch. 5.3 - Prob. 24ECh. 5.3 - Prob. 25ECh. 5.3 - Prob. 26ECh. 5.3 - Prob. 27ECh. 5.3 - In Exercise 5.10, we proved that...Ch. 5.3 - Prob. 29ECh. 5.3 - In Exercise 5.12, we were given the following...Ch. 5.3 - In Exercise 5.13, the joint density function of Y1...Ch. 5.3 - Prob. 32ECh. 5.3 - Suppose that Y1 is the total time between a...Ch. 5.3 - Prob. 34ECh. 5.3 - Prob. 35ECh. 5.3 - Prob. 36ECh. 5.3 - Prob. 37ECh. 5.3 - Let Y1 denote the weight (in tons) of a bulk item...Ch. 5.3 - Prob. 39ECh. 5.3 - Prob. 40ECh. 5.3 - Prob. 41ECh. 5.3 - Prob. 42ECh. 5.4 - Let Y1 and Y2 have joint density function f(y1,...Ch. 5.4 - Prob. 44ECh. 5.4 - Prob. 45ECh. 5.4 - Prob. 46ECh. 5.4 - In Exercise 5.3, we determined that the joint...Ch. 5.4 - In Exercise 5.4, you were given the following...Ch. 5.4 - In Example 5.4 and Exercise 5.5, we considered the...Ch. 5.4 - Prob. 50ECh. 5.4 - Prob. 51ECh. 5.4 - Prob. 52ECh. 5.4 - Prob. 53ECh. 5.4 - Prob. 54ECh. 5.4 - Prob. 55ECh. 5.4 - In Exercise 5.12, we were given the following...Ch. 5.4 - Prob. 57ECh. 5.4 - Suppose that the random variables Y1 and Y2 have...Ch. 5.4 - If Y1 is the total time between a customers...Ch. 5.4 - Prob. 60ECh. 5.4 - Prob. 61ECh. 5.4 - Prob. 62ECh. 5.4 - Let Y1 and Y2 be independent exponentially...Ch. 5.4 - Prob. 64ECh. 5.4 - Prob. 65ECh. 5.4 - Let F1(y1) and F2(y2) be two distribution...Ch. 5.4 - Prob. 67ECh. 5.4 - Prob. 68ECh. 5.4 - The length of life Y for fuses of a certain type...Ch. 5.4 - A bus arrives at a bus stop at a uniformly...Ch. 5.4 - Prob. 71ECh. 5.6 - In Exercise 5.1, we determined that the joint...Ch. 5.6 - Prob. 73ECh. 5.6 - Refer to Exercises 5.6, 5.24, and 5.50. Suppose...Ch. 5.6 - Prob. 75ECh. 5.6 - Prob. 76ECh. 5.6 - Prob. 77ECh. 5.6 - Prob. 78ECh. 5.6 - Suppose that, as in Exercise 5.11, Y1 and Y2 are...Ch. 5.6 - In Exercise 5.16, Y1 and Y2 denoted the...Ch. 5.6 - In Exercise 5.18, Y1 and Y2 denoted the lengths of...Ch. 5.6 - In Exercise 5.38, we determined that the joint...Ch. 5.6 - Prob. 83ECh. 5.6 - In Exercise 5.62, we considered two individuals...Ch. 5.6 - Prob. 85ECh. 5.6 - Prob. 86ECh. 5.6 - Prob. 87ECh. 5.6 - Prob. 88ECh. 5.7 - In Exercise 5.1, we determined that the joint...Ch. 5.7 - Prob. 90ECh. 5.7 - In Exercise 5.8, we derived the fact that...Ch. 5.7 - Prob. 92ECh. 5.7 - Suppose that, as in Exercises 5.11 and 5.79, Y1...Ch. 5.7 - Prob. 94ECh. 5.7 - Prob. 95ECh. 5.7 - Prob. 96ECh. 5.7 - The random variables Y1 and Y2 are such that E(Y1)...Ch. 5.7 - Prob. 98ECh. 5.7 - Prob. 99ECh. 5.7 - Let Z be a standard normal random variable and let...Ch. 5.7 - Prob. 101ECh. 5.8 - A firm purchases two types of industrial...Ch. 5.8 - Prob. 103ECh. 5.8 - Prob. 104ECh. 5.8 - Prob. 105ECh. 5.8 - In Exercise 5.9, we determined that...Ch. 5.8 - In Exercise 5.12, we were given the following...Ch. 5.8 - If Y1 is the total time between a customers...Ch. 5.8 - In Exercise 5.16, Y1 and Y2 denoted the...Ch. 5.8 - Suppose that Y1 and Y2 have correlation...Ch. 5.8 - Prob. 111ECh. 5.8 - In Exercise 5.18, Y1 and Y2 denoted the lengths of...Ch. 5.8 - A retail grocery merchant figures that her daily...Ch. 5.8 - For the daily output of an industrial operation,...Ch. 5.8 - Prob. 115ECh. 5.8 - Prob. 116ECh. 5.8 - A population of N alligators is to be sampled in...Ch. 5.8 - Prob. 118ECh. 5.9 - A learning experiment requires a rat to run a maze...Ch. 5.9 - Prob. 120ECh. 5.9 - Refer to Exercise 5.117. Suppose that the number N...Ch. 5.9 - The weights of a population of mice fed on a...Ch. 5.9 - Prob. 123ECh. 5.9 - The typical cost of damages caused by a fire in a...Ch. 5.9 - When commercial aircraft are inspected, wing...Ch. 5.9 - Prob. 126ECh. 5.9 - Prob. 127ECh. 5.10 - Let Y1 and Y2 have a bivariate normal...Ch. 5.10 - Prob. 129ECh. 5.10 - Prob. 130ECh. 5.10 - Prob. 131ECh. 5.10 - Prob. 132ECh. 5.11 - Prob. 133ECh. 5.11 - Prob. 134ECh. 5.11 - In Exercise 5.41, we considered a quality control...Ch. 5.11 - In Exercise 5.42, the number of defects per yard...Ch. 5.11 - In Exercise 5.38, we assumed that Y1, the weight...Ch. 5.11 - Assume that Y denotes the number of bacteria per...Ch. 5.11 - Prob. 139ECh. 5.11 - Prob. 140ECh. 5.11 - Let Y1 have an exponential distribution with mean ...Ch. 5.11 - Prob. 142ECh. 5.11 - Prob. 143ECh. 5 - Prove Theorem 5.9 when Y1 and Y2 are independent...Ch. 5 - Prob. 145SECh. 5 - Prob. 146SECh. 5 - Two friends are to meet at the library. Each...Ch. 5 - Prob. 148SECh. 5 - Prob. 149SECh. 5 - Prob. 150SECh. 5 - The lengths of life Y for a type of fuse has an...Ch. 5 - In the production of a certain type of copper, two...Ch. 5 - Suppose that the number of eggs laid by a certain...Ch. 5 - In a clinical study of a new drug formulated to...Ch. 5 - Prob. 155SECh. 5 - Refer to Exercise 5.86. Suppose that Z is a...Ch. 5 - Prob. 157SECh. 5 - Prob. 158SECh. 5 - Prob. 159SECh. 5 - Prob. 160SECh. 5 - Suppose that we are to observe two independent...Ch. 5 - Prob. 162SECh. 5 - Prob. 163SECh. 5 - Prob. 164SECh. 5 - Prob. 165SECh. 5 - Prob. 166SECh. 5 - Prob. 167SE
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
MATLAB: An Introduction with Applications
Statistics
ISBN:9781119256830
Author:Amos Gilat
Publisher:John Wiley & Sons Inc
Text book image
Probability and Statistics for Engineering and th...
Statistics
ISBN:9781305251809
Author:Jay L. Devore
Publisher:Cengage Learning
Text book image
Statistics for The Behavioral Sciences (MindTap C...
Statistics
ISBN:9781305504912
Author:Frederick J Gravetter, Larry B. Wallnau
Publisher:Cengage Learning
Text book image
Elementary Statistics: Picturing the World (7th E...
Statistics
ISBN:9780134683416
Author:Ron Larson, Betsy Farber
Publisher:PEARSON
Text book image
The Basic Practice of Statistics
Statistics
ISBN:9781319042578
Author:David S. Moore, William I. Notz, Michael A. Fligner
Publisher:W. H. Freeman
Text book image
Introduction to the Practice of Statistics
Statistics
ISBN:9781319013387
Author:David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:W. H. Freeman