Integrating piecewise continuous functions Suppose f is continuous on the intervals [ a , p ] and [ p , b ], where a < p < b, with a finite jump at p . Form a uniform partition on the interval [ a , p ] with n grid points and another uniform partition on the interval [ p, b ] with m grid points, where p is a grid point of both partitions. Write a Riemann sum for ∫ a b f ( x ) d x and separate it into two pieces for [ a, p ] and [ p, b ] . Explain why ∫ a b f ( x ) d x = ∫ a p f ( x ) d x + ∫ p b f ( x ) d x .
Integrating piecewise continuous functions Suppose f is continuous on the intervals [ a , p ] and [ p , b ], where a < p < b, with a finite jump at p . Form a uniform partition on the interval [ a , p ] with n grid points and another uniform partition on the interval [ p, b ] with m grid points, where p is a grid point of both partitions. Write a Riemann sum for ∫ a b f ( x ) d x and separate it into two pieces for [ a, p ] and [ p, b ] . Explain why ∫ a b f ( x ) d x = ∫ a p f ( x ) d x + ∫ p b f ( x ) d x .
Solution Summary: The author explains the Riemann sum for displaystyle 'underseta' and the limit of f from a and b.
Integratingpiecewise continuous functions Suppose f is continuous on the intervals [a, p] and [p, b], where a < p < b, with a finite jump at p. Form a uniform partition on the interval [a, p] with n grid points and another uniform partition on the interval [p, b] with m grid points, where p is a grid point of both partitions. Write a Riemann sum for
∫
a
b
f
(
x
)
d
x
and separate it into two pieces for [a, p] and [p, b]. Explain why
∫
a
b
f
(
x
)
d
x
=
∫
a
p
f
(
x
)
d
x
+
∫
p
b
f
(
x
)
d
x
.
Definition Definition Group of one or more functions defined at different and non-overlapping domains. The rule of a piecewise function is different for different pieces or portions of the domain.
a
->
f(x) = f(x) = [x] show that whether f is continuous function or not(by using theorem)
Muslim_maths
Use Green's Theorem to evaluate F. dr, where
F = (√+4y, 2x + √√)
and C consists of the arc of the curve y = 4x - x² from (0,0) to (4,0) and the line segment from (4,0) to
(0,0).
Evaluate
F. dr where F(x, y, z) = (2yz cos(xyz), 2xzcos(xyz), 2xy cos(xyz)) and C is the line
π 1
1
segment starting at the point (8,
'
and ending at the point (3,
2
3'6
College Algebra with Modeling & Visualization (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.