
Concept explainers
a.
Obtain a trial for the given problem.
Describe a success for the given problem.
Describe a failure for the given problem.
Mention the values for n, p, and q.
Compute the
a.

Answer to Problem 26P
The trial is visit to office.
The success is described as visiting patient’s age is under 15 years.
The failure is described as visiting patient’s age is 15 years or older.
Total number of office visits is
The probability that visiting patient’s age is under 15 years (or success) is
The probability that visiting patient’s age is 15 years or older is
The probability that at least half the patients are under the age of 15 years is 0.056.
Explanation of Solution
Calculation:
Trial:
The trial is considered as visiting to office.
Success:
Consider success as visiting patient’s age is less than 15 years.
Failure:
Consider failure as visiting patient’s age is 15 years or older.
Values:
Total number of office visits is
The probability that visiting patient’s age is under 15 years (or success) is
The probability that visiting patient’s age is 15 years or older (or failure) is calculated as given below:
Random Variable:
Let r be a binomial random variable, which represents the number of patients under the age of 15 years.
Binomial probability:
The probability of r successes out of n trials is given below:
Here, n is the number of trials, r is the number of successes, p is the probability of success, and q is the probability of failure.
Here, there are only two possible outcomes, the trials are independent of each other, the probability that visiting patient’s age is under 15 years remains same for all the trials, and there are fixed number of trials (n=8). Thus, this can be modeled as binomial distribution.
The probability that at least half the patients are under the age of 15 years is calculated as given below:
Therefore, the probability that at least half the patients are under the age of 15 years is 0.056.
b.
Compute the probability that 2 to 5 patients are 65 years or older.
b.

Answer to Problem 26P
The probability that 2 to 5 patients are 65 years or older are 0.629
Explanation of Solution
Calculation:
Here, the success is visiting patient’s age is 65 years or older and the failure is visiting patient’s age is less than 65 years.
The probability that visiting patient’s age is 65 years or older (or success) is
The probability that visiting patient’s age less than 65 years is calculated as given below:
The probability that 2 to 5 patients are 65 years or older is calculated as given below:
Therefore, the probability that 2 to 5 patients are 65 years or older is 0.629.
c.
Compute the probability that 2 to 5 patients are 45 years or older.
c.

Answer to Problem 26P
The probability that 2 to 5 patients are 45 years or older is 0.849.
Explanation of Solution
Calculation:
Here, the success is visiting patient’s age is 45 years or older and the failure is visiting patient’s age is less than 45 years.
The probability that visiting patient’s age is 45 years or older (or success) is calculated as given below:
The probability that visiting patient’s age less than 45 years (or failure) is calculated as given below:
Random Variable:
Let r be a binomial random variable, which represents the number of patients 45 years or older.
The probability that 2 to 5 patients are 45 years or older is calculated as given below:
Therefore, the probability that 2 to 5 patients are 45 years or older is 0.849.
d.
Compute the probability that all the patients are 25 years old.
d.

Answer to Problem 26P
The probability that all the patients are less than 25 years or older is 0.000.
Explanation of Solution
Calculation:
Here, the success is visiting patient’s age is less than 25 years and the failure is visiting patient’s age is 25 years or older.
The probability that visiting patient’s age is less than 25 years (or success) is calculated as given below:
The probability that visiting patient’s age is 25 years or older (or failure) is calculated as given below:
Random Variable:
Let r be a binomial random variable, which represents the number of patients under 25 years.
The probability that all the patients are less than 25 years is calculated as given below:
Therefore, the probability that all the patients are less than 25 years is 0.000.
e.
Compute the probability that all the patients are 15 years old or older.
e.

Answer to Problem 26P
The probability that all the patients are 15 years old or older is 0.168.
Explanation of Solution
Calculation:
Here, the success is visiting patient’s age is 15 years old or older and the failure is visiting patient’s age is less than 15 years.
The probability that visiting patient’s age is 15 years old or older (or success) is calculated as given below:
The probability that visiting patient’s age is under 15 years old (or failure) is calculated as given below:
Random Variable:
Let r be a binomial random variable, which represents the number of patients 15 years old or older.
The probability that all the patients are 15 years old or older is calculated as given below:
Therefore, the probability that all the patients are 15 years old or older is 0.168.
Want to see more full solutions like this?
Chapter 5 Solutions
Understandable Statistics: Concepts and Methods
- 1. If a firm spends more on advertising, is it likely to increase sales? Data on annual sales (in $100,000s) and advertising expenditures (in $10,000s) were collected for 20 firms in order to estimate the model Sales = Po + B₁Advertising + ε. A portion of the regression results is shown in the accompanying table. Intercept Advertising Standard Coefficients Error t Stat p-value -7.42 1.46 -5.09 7.66E-05 0.42 0.05 8.70 7.26E-08 a. Interpret the estimated slope coefficient. b. What is the sample regression equation? C. Predict the sales for a firm that spends $500,000 annually on advertising.arrow_forwardCan you help me solve problem 38 with steps im stuck.arrow_forwardHow do the samples hold up to the efficiency test? What percentages of the samples pass or fail the test? What would be the likelihood of having the following specific number of efficiency test failures in the next 300 processors tested? 1 failures, 5 failures, 10 failures and 20 failures.arrow_forward
- The battery temperatures are a major concern for us. Can you analyze and describe the sample data? What are the average and median temperatures? How much variability is there in the temperatures? Is there anything that stands out? Our engineers’ assumption is that the temperature data is normally distributed. If that is the case, what would be the likelihood that the Safety Zone temperature will exceed 5.15 degrees? What is the probability that the Safety Zone temperature will be less than 4.65 degrees? What is the actual percentage of samples that exceed 5.25 degrees or are less than 4.75 degrees? Is the manufacturing process producing units with stable Safety Zone temperatures? Can you check if there are any apparent changes in the temperature pattern? Are there any outliers? A closer look at the Z-scores should help you in this regard.arrow_forwardNeed help pleasearrow_forwardPlease conduct a step by step of these statistical tests on separate sheets of Microsoft Excel. If the calculations in Microsoft Excel are incorrect, the null and alternative hypotheses, as well as the conclusions drawn from them, will be meaningless and will not receive any points. 4. One-Way ANOVA: Analyze the customer satisfaction scores across four different product categories to determine if there is a significant difference in means. (Hints: The null can be about maintaining status-quo or no difference among groups) H0 = H1=arrow_forward
- Please conduct a step by step of these statistical tests on separate sheets of Microsoft Excel. If the calculations in Microsoft Excel are incorrect, the null and alternative hypotheses, as well as the conclusions drawn from them, will be meaningless and will not receive any points 2. Two-Sample T-Test: Compare the average sales revenue of two different regions to determine if there is a significant difference. (Hints: The null can be about maintaining status-quo or no difference among groups; if alternative hypothesis is non-directional use the two-tailed p-value from excel file to make a decision about rejecting or not rejecting null) H0 = H1=arrow_forwardPlease conduct a step by step of these statistical tests on separate sheets of Microsoft Excel. If the calculations in Microsoft Excel are incorrect, the null and alternative hypotheses, as well as the conclusions drawn from them, will be meaningless and will not receive any points 3. Paired T-Test: A company implemented a training program to improve employee performance. To evaluate the effectiveness of the program, the company recorded the test scores of 25 employees before and after the training. Determine if the training program is effective in terms of scores of participants before and after the training. (Hints: The null can be about maintaining status-quo or no difference among groups; if alternative hypothesis is non-directional, use the two-tailed p-value from excel file to make a decision about rejecting or not rejecting the null) H0 = H1= Conclusion:arrow_forwardPlease conduct a step by step of these statistical tests on separate sheets of Microsoft Excel. If the calculations in Microsoft Excel are incorrect, the null and alternative hypotheses, as well as the conclusions drawn from them, will be meaningless and will not receive any points. The data for the following questions is provided in Microsoft Excel file on 4 separate sheets. Please conduct these statistical tests on separate sheets of Microsoft Excel. If the calculations in Microsoft Excel are incorrect, the null and alternative hypotheses, as well as the conclusions drawn from them, will be meaningless and will not receive any points. 1. One Sample T-Test: Determine whether the average satisfaction rating of customers for a product is significantly different from a hypothetical mean of 75. (Hints: The null can be about maintaining status-quo or no difference; If your alternative hypothesis is non-directional (e.g., μ≠75), you should use the two-tailed p-value from excel file to…arrow_forward
- Please conduct a step by step of these statistical tests on separate sheets of Microsoft Excel. If the calculations in Microsoft Excel are incorrect, the null and alternative hypotheses, as well as the conclusions drawn from them, will be meaningless and will not receive any points. 1. One Sample T-Test: Determine whether the average satisfaction rating of customers for a product is significantly different from a hypothetical mean of 75. (Hints: The null can be about maintaining status-quo or no difference; If your alternative hypothesis is non-directional (e.g., μ≠75), you should use the two-tailed p-value from excel file to make a decision about rejecting or not rejecting null. If alternative is directional (e.g., μ < 75), you should use the lower-tailed p-value. For alternative hypothesis μ > 75, you should use the upper-tailed p-value.) H0 = H1= Conclusion: The p value from one sample t-test is _______. Since the two-tailed p-value is _______ 2. Two-Sample T-Test:…arrow_forwardPlease conduct a step by step of these statistical tests on separate sheets of Microsoft Excel. If the calculations in Microsoft Excel are incorrect, the null and alternative hypotheses, as well as the conclusions drawn from them, will be meaningless and will not receive any points. What is one sample T-test? Give an example of business application of this test? What is Two-Sample T-Test. Give an example of business application of this test? .What is paired T-test. Give an example of business application of this test? What is one way ANOVA test. Give an example of business application of this test? 1. One Sample T-Test: Determine whether the average satisfaction rating of customers for a product is significantly different from a hypothetical mean of 75. (Hints: The null can be about maintaining status-quo or no difference; If your alternative hypothesis is non-directional (e.g., μ≠75), you should use the two-tailed p-value from excel file to make a decision about rejecting or not…arrow_forwardThe data for the following questions is provided in Microsoft Excel file on 4 separate sheets. Please conduct a step by step of these statistical tests on separate sheets of Microsoft Excel. If the calculations in Microsoft Excel are incorrect, the null and alternative hypotheses, as well as the conclusions drawn from them, will be meaningless and will not receive any points. What is one sample T-test? Give an example of business application of this test? What is Two-Sample T-Test. Give an example of business application of this test? .What is paired T-test. Give an example of business application of this test? What is one way ANOVA test. Give an example of business application of this test? 1. One Sample T-Test: Determine whether the average satisfaction rating of customers for a product is significantly different from a hypothetical mean of 75. (Hints: The null can be about maintaining status-quo or no difference; If your alternative hypothesis is non-directional (e.g., μ≠75), you…arrow_forward
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillBig Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin Harcourt

