Interpretation:
To find characteristic polynomial
Solve the given system of linear equations and write the general solution.
Classify the fixed points at the origin.
Solve the system subject to the primary condition
Concept Introduction:
Equations for two dimensional linear system are
The above linear system expressed in the form
The standard characteristics polynomials is
Answer to Problem 1E
Solution:
The characteristic polynomial for the linear system of equation is
Overall solution of the system is
The nature of fixed points for the given linear equations is unstable and growing.
The solution of the system for initial condition
Explanation of Solution
The linear system equations are
And,
The above linear equations can be written in matrix form as
The standard characteristic polynomial is
Here,
Substitute
This is the necessarycharacteristic polynomial.
To find the eigenvalues of the above characteristic polynomial, find its roots.
Using characteristic equation, find eigenvectors for the given eigenvalues.
General solution of the system is written as
Here,
The fixed points at the origin can never be stable if both eigenvalues are positive and real. Hence the nature of fixed points for the given linear equations is unstable and growing. This means the stream lines are moving out from the center of the origin. Also,
Initial condition is
Substitute
Solving for
Substituting this values in general solution of time t,
This
The characteristic equation, eigenvalues, and eigenvectors are found for the given system of linear equations. Also general solution and solution of the given initial condition is found.
Want to see more full solutions like this?
Chapter 5 Solutions
EBK NONLINEAR DYNAMICS AND CHAOS WITH S
- Already got wrong Chatgpt answer Plz don't use chat gptarrow_forwardT1 T₂ T7 T11 (15) (18) 8 (12) (60) 5 T3 T6 12° 5 5 5 T8 T10 T4 (25) T5 To 1. List all the maximal paths and their weights for the graph above. 2. Give the decreasing-time priority list. 3. Schedule the project using 2 processors and the decreasing-time priority list.arrow_forwardHorizontal cross-sections of the vector fields F⃗ (x,y,z) and G⃗ (x,y,z) are given in the figure. Each vector field has zero z-component (i.e., all of its vectors are horizontal) and is independent of z (i.e., is the same in every horizontal plane). You may assume that the graphs of these vector fields use the same scale. (a) Are div(F⃗ ) and div(G⃗ ) positive, negative, or zero at the origin? Be sure you can explain your answer. At the origin, div(F⃗ ) is Choose At the origin, div(G⃗ ) is Choose (b) Are F⃗ and G⃗ curl free (irrotational) or not at the origin? Be sure you can explain your answer. At the origin, F⃗ is Choose At the origin, G⃗ isarrow_forward
- I need a counter example for this predicate logic question only do f please thanksarrow_forwardLet M be the capped cylindrical surface which is the union of two surfaces, a cylinder given by x² + y² = 9, 0 ≤ z < 1, and a hemispherical cap defined by x² + y² + (z − 1)² = 9, z ≥ 1. For the vector field F = (x²), : (zx + z²y +2y, z³yx + 4x, z²x² compute M (V × F) · dS in any way you like. ſſ₁(▼ × F) · dS = •arrow_forwardHorizontal cross-sections of the vector fields F⃗ (x,y,z) and G⃗ (x,y,z) are given in the figure. Each vector field has zero z-component (i.e., all of its vectors are horizontal) and is independent of z (i.e., is the same in every horizontal plane). You may assume that the graphs of these vector fields use the same scale. (a) Are div(F⃗ ) and div(G⃗ ) positive, negative, or zero at the origin? Be sure you can explain your answer. At the origin, div(F⃗ ) is At the origin, div(G⃗ ) is (b) Are F⃗ and G⃗ curl free (irrotational) or not at the origin? Be sure you can explain your answer. At the origin, F⃗ is At the origin, G⃗ is (c) Is there a closed surface around the origin such that F⃗ has nonzero flux through it? Be sure you can explain your answer by finding an example or a counterexample. (d) Is there a closed surface around the origin such that G⃗ has nonzero circulation around it? Be sure you can explain your answer by finding an example or a…arrow_forward
- 2. Let X and Y be sets and let f: XY. Prove that f is injective for all sets U, for all functions h: UX and k: UX, if foh=fok, then h = k.arrow_forwardBY Euler's method approxmate the solution. y' (t) = [cos (Y(+1)]², -ost≤1, y(o)=0 h=015arrow_forwardA company produces a spherical object of radius 23 centimeters. A hole of radius 8 centimeters is drilled through the center of the object. (a) Find the volume (in cm³) of the object. (Round your answer to one decimal place.) 48820.4 × cm³ 3 (b) Find the outer surface area (in cm²) of the object. (Round your answer to one decimal place.) 6647.7 x cm²arrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageElementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
- Algebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningCollege AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning