
Problem Solving Approach to Mathematics for Elementary School Teachers, A, Plus MyLab Math -- Access Card Package (12th Edition)
12th Edition
ISBN: 9780321990594
Author: Rick Billstein, Shlomo Libeskind, Johnny Lott
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5.1A, Problem 29A
An arithmetic sequence may have a positive or negative difference. In each of the following arithmetic sequences, find the difference and write the next two terms.
a.
b.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Example: For what odd primes p is 11 a quadratic residue modulo p?
Solution:
This is really asking "when is (11 | p) =1?"
First, 11 = 3 (mod 4). To use LQR, consider two cases p = 1 or 3 (mod 4):
p=1 We have 1 = (11 | p) = (p | 11), so p is a quadratic residue modulo 11. By
brute force:
121, 224, 3² = 9, 4² = 5, 5² = 3 (mod 11)
so the quadratic residues mod 11 are 1,3,4,5,9.
Using CRT for p = 1 (mod 4) & p = 1,3,4,5,9 (mod 11).
p = 1
(mod 4)
&
p = 1
(mod 11
gives p
1
(mod 44).
p = 1
(mod 4)
&
p = 3
(mod 11)
gives p25
(mod 44).
p = 1
(mod 4)
&
p = 4
(mod 11)
gives p=37
(mod 44).
p = 1
(mod 4)
&
p = 5
(mod 11)
gives p
5
(mod 44).
p = 1
(mod 4)
&
p=9
(mod 11)
gives p
9
(mod 44).
So p =1,5,9,25,37 (mod 44).
Can you answer this question and give step by step and why and how to get it. Can you write it (numerical method)
Jamal wants to save $48,000 for a down payment on a home. How much will he need to invest in an
account with 11.8% APR, compounding daily, in order to reach his goal in 10 years? Round to the
nearest dollar.
Chapter 5 Solutions
Problem Solving Approach to Mathematics for Elementary School Teachers, A, Plus MyLab Math -- Access Card Package (12th Edition)
Ch. 5.1 - A turnpike driver had car trouble. He knew that he...Ch. 5.1 - Prob. 2MCCh. 5.1 - Prob. 3MCCh. 5.1 - Prob. 4MCCh. 5.1 - Prob. 5MCCh. 5.1 - Prob. 6MCCh. 5.1 - Describe a realistic word problem that models...Ch. 5.1 - Prob. 8MCCh. 5.1 - Prob. 9MCCh. 5.1 - Investigate how tides are measured and design an...
Ch. 5.1 - A fourth-grade student devised the following...Ch. 5.1 - Prob. 14MCCh. 5.1 - MATHEMATICAL CONNECTIONS A student had the...Ch. 5.1 - Prob. 16MCCh. 5.1 - Prob. 17MCCh. 5.1 - Prob. 1NAEPCh. 5.1 - Prob. 2NAEPCh. 5.1A - Find the additive inverse of each of the following...Ch. 5.1A - Simplify each of the following expressions. a. (2)...Ch. 5.1A - Evaluate each of the following expressions. a. |5|...Ch. 5.1A - Demonstrate each of the following additions using...Ch. 5.1A - Demonstrate each of the additions in Exercise 4...Ch. 5.1A - Use the absolute value definition of addition to...Ch. 5.1A - Prob. 7ACh. 5.1A - Prob. 8ACh. 5.1A - Prob. 9ACh. 5.1A - Prob. 10ACh. 5.1A - Prob. 11ACh. 5.1A - Prob. 12ACh. 5.1A - Prob. 13ACh. 5.1A - Compute each of following expression. a. 2+(310)...Ch. 5.1A - Prob. 15ACh. 5.1A - Simplify each of the following expressions as much...Ch. 5.1A - For which integers a, b and c does ab+c=a(bc)?...Ch. 5.1A - Prob. 18ACh. 5.1A - Place the integers 4,3,2,0,1,2,3,4 in the grid to...Ch. 5.1A - Let y=x1. Find the value of y in parts a-d when x...Ch. 5.1A - Determine the number of terms in the arithmetic...Ch. 5.1A - Prob. 22ACh. 5.1A - Find the sum of the terms in the following...Ch. 5.1A - How could you explain the time change from the...Ch. 5.1A - Prob. 25ACh. 5.1A - Prob. 26ACh. 5.1A - Find all integer x, if there are any, such that...Ch. 5.1A - In each of the following equations, find all...Ch. 5.1A - An arithmetic sequence may have a positive or...Ch. 5.1A - Prob. 30ACh. 5.1A - Solve the following equations. a. x+7=3 b. 10+x=7...Ch. 5.1A - Prob. 32ACh. 5.1B - ASSESSMENT Find the additive inverse of each of...Ch. 5.1B - ASSESSMENT Simplify each of the following...Ch. 5.1B - ASSESSMENT Evaluate each of the following...Ch. 5.1B - Prob. 5ACh. 5.1B - Prob. 6ACh. 5.1B - Prob. 7ACh. 5.1B - Prob. 8ACh. 5.1B - Prob. 9ACh. 5.1B - Prob. 10ACh. 5.1B - Prob. 11ACh. 5.1B - Prob. 12ACh. 5.1B - Prob. 13ACh. 5.1B - ASSESSMENT Compute each of the following. a....Ch. 5.1B - Prob. 15ACh. 5.1B - ASSESSMENT Simplify each of the following...Ch. 5.1B - Prob. 17ACh. 5.1B - Prob. 18ACh. 5.1B - Prob. 19ACh. 5.1B - ASSESSMENT Let y=3x2. Find the value of y in parts...Ch. 5.1B - Prob. 21ACh. 5.1B - Prob. 22ACh. 5.1B - Prob. 23ACh. 5.1B - Prob. 24ACh. 5.1B - Prob. 25ACh. 5.1B - ASSESSMENT Find all integers x, if there are any,...Ch. 5.1B - ASSESSMENT Let y=|x5|. Find the value of y in...Ch. 5.1B - Prob. 28ACh. 5.1B - ASSESSMENT An arithmetic sequence may have a...Ch. 5.1B - Prob. 30ACh. 5.1B - Prob. 31ACh. 5.1B - Prob. 32ACh. 5.2 - Explain whether (xy)(x+y) can be multiplied by...Ch. 5.2 - We use the equation (a+b)2=a2+2ab+b2 to find a...Ch. 5.2 - Consider the argument to show that (a)(b)=(ab) for...Ch. 5.2 - Prob. 4MCCh. 5.2 - Explain how to find the number of integers between...Ch. 5.2 - Prob. 6MCCh. 5.2 - Prob. 7MCCh. 5.2 - Prob. 8MCCh. 5.2 - Prob. 9MCCh. 5.2 - Prob. 10MCCh. 5.2 - Prob. 11MCCh. 5.2 - A seventh-grade student does not believe 52.The...Ch. 5.2 - A student computes 82(3) by writing 10(3)=30. How...Ch. 5.2 - Prob. 16MCCh. 5.2 - Mariyana felt that using absolute values with...Ch. 5.2 - Prob. 18MCCh. 5.2 - Prob. 19MCCh. 5.2 - Prob. 20MCCh. 5.2 - Prob. 21MCCh. 5.2 - Prob. 22MCCh. 5.2 - Prob. 1NAEPCh. 5.2 - Prob. 2NAEPCh. 5.2A - Use patterns to show that (1)(1)=1Ch. 5.2A - Prob. 2ACh. 5.2A - Prob. 3ACh. 5.2A - Prob. 4ACh. 5.2A - The number of students eating in the school...Ch. 5.2A - Use the definition of division to find each...Ch. 5.2A - Evaluate each of the following expressions, if...Ch. 5.2A - Evaluate each of the following products and then,...Ch. 5.2A - In each of the following, x and y are integers;y0....Ch. 5.2A - In a lab, the temperature of various chemical...Ch. 5.2A - The farmland acreage lost to family dwellings over...Ch. 5.2A - Illustrate the distributive property of...Ch. 5.2A - Compute each of the following. a. (2)3 b. (2)4 c....Ch. 5.2A - If x is an integer and x0, which of the following...Ch. 5.2A - Find all integer values of x for which the...Ch. 5.2A - Prob. 16ACh. 5.2A - Identify the property of integers being...Ch. 5.2A - Prob. 18ACh. 5.2A - Multiply each of the following and combine terms...Ch. 5.2A - Find all integers x if any each of the following....Ch. 5.2A - Use the difference-of-squares formula to simplify...Ch. 5.2A - Factor each of the following expressions...Ch. 5.2A - Prob. 23ACh. 5.2A - Prob. 24ACh. 5.2A - Find the missing terms in the following arithmetic...Ch. 5.2A - A hot air balloon descends at the rate of...Ch. 5.2A - Prob. 27ACh. 5.2B - Use patterns to show that (2)(2)=4.Ch. 5.2B - Prob. 2ACh. 5.2B - Prob. 3ACh. 5.2B - In each of the following charged-field models, the...Ch. 5.2B - Prob. 5ACh. 5.2B - Prob. 6ACh. 5.2B - Prob. 7ACh. 5.2B - Prob. 8ACh. 5.2B - Prob. 9ACh. 5.2B - Prob. 10ACh. 5.2B - Prob. 11ACh. 5.2B - Prob. 12ACh. 5.2B - Compute each of the following. a. 10312 b. 10(312)...Ch. 5.2B - Prob. 14ACh. 5.2B - Identify the property of integers being...Ch. 5.2B - Prob. 16ACh. 5.2B - Multiply each of the following and combine terms...Ch. 5.2B - Find all integers x if any that make the...Ch. 5.2B - Use the difference of squares formula to simplify...Ch. 5.2B - Factor each of the following expressions...Ch. 5.2B - Prob. 21ACh. 5.2B - In each of the following, find the next two terms....Ch. 5.2B - Prob. 23ACh. 5.2B - Prob. 24ACh. 5.2B - Prob. 25ACh. 5.2B - Prob. 26ACh. 5.2B - Prob. 27ACh. 5.CR - Find the additive inverse of each of the...Ch. 5.CR - Prob. 2CRCh. 5.CR - For each of the following, find all possible...Ch. 5.CR - Prob. 4CRCh. 5.CR - Prob. 5CRCh. 5.CR - Simplify each of the following expressions. a. 1x...Ch. 5.CR - Prob. 7CRCh. 5.CR - Prob. 8CRCh. 5.CR - Prob. 9CRCh. 5.CR - Prob. 10CRCh. 5.CR - Prob. 11CRCh. 5.CR - In each part of exercise 11, if a sequence is...Ch. 5.CR - Prob. 13CRCh. 5.CR - Prob. 14CRCh. 5.CR - Prob. 15CRCh. 5.CR - Prob. 16CRCh. 5.CR - Prob. 17CRCh. 5.CR - Prob. 18CRCh. 5.CR - Prob. 19CRCh. 5.CR - Prob. 20CRCh. 5.CR - Prob. 21CRCh. 5.CR - Prob. 22CRCh. 5.CR - Prob. 23CRCh. 5.CR - The drawing below depicts an elevator. Explain...Ch. 5.CR - Prob. 25CRCh. 5.CR - Prob. 26CRCh. 5.CR - Prob. 27CRCh. 5.CR - Prob. 28CRCh. 5.CR - Prob. 29CRCh. 5.CR - Prob. 30CRCh. 5 - Now Try this 1 Explain whether the sum of two...Ch. 5 - Prob. 2NTCh. 5 - Now Try this 2 Model the subtraction 43 on a...Ch. 5 - Prob. 4NT
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- r nt Use the compound interest formula, A (t) = P(1 + 1)". An account is opened with an intial deposit of $7,500 and earns 3.8% interest compounded semi- annually. Round all answers to the nearest dollar. a. What will the account be worth in 10 years? $ b. What if the interest were compounding monthly? $ c. What if the interest were compounded daily (assume 365 days in a year)? $arrow_forwardKyoko has $10,000 that she wants to invest. Her bank has several accounts to choose from. Her goal is to have $15,000 by the time she finishes graduate school in 7 years. To the nearest hundredth of a percent, what should her minimum annual interest rate be in order to reach her goal assuming they compound daily? (Hint: solve the compound interest formula for the intrerest rate. Also, assume there are 365 days in a year) %arrow_forwardTest the claim that a student's pulse rate is different when taking a quiz than attending a regular class. The mean pulse rate difference is 2.7 with 10 students. Use a significance level of 0.005. Pulse rate difference(Quiz - Lecture) 2 -1 5 -8 1 20 15 -4 9 -12arrow_forward
- There are three options for investing $1150. The first earns 10% compounded annually, the second earns 10% compounded quarterly, and the third earns 10% compounded continuously. Find equations that model each investment growth and use a graphing utility to graph each model in the same viewing window over a 20-year period. Use the graph to determine which investment yields the highest return after 20 years. What are the differences in earnings among the three investment? STEP 1: The formula for compound interest is A = nt = P(1 + − − ) n², where n is the number of compoundings per year, t is the number of years, r is the interest rate, P is the principal, and A is the amount (balance) after t years. For continuous compounding, the formula reduces to A = Pert Find r and n for each model, and use these values to write A in terms of t for each case. Annual Model r=0.10 A = Y(t) = 1150 (1.10)* n = 1 Quarterly Model r = 0.10 n = 4 A = Q(t) = 1150(1.025) 4t Continuous Model r=0.10 A = C(t) =…arrow_forwardThe following ordered data list shows the data speeds for cell phones used by a telephone company at an airport: A. Calculate the Measures of Central Tendency from the ungrouped data list. B. Group the data in an appropriate frequency table. C. Calculate the Measures of Central Tendency using the table in point B. D. Are there differences in the measurements obtained in A and C? Why (give at least one justified reason)? I leave the answers to A and B to resolve the remaining two. 0.8 1.4 1.8 1.9 3.2 3.6 4.5 4.5 4.6 6.2 6.5 7.7 7.9 9.9 10.2 10.3 10.9 11.1 11.1 11.6 11.8 12.0 13.1 13.5 13.7 14.1 14.2 14.7 15.0 15.1 15.5 15.8 16.0 17.5 18.2 20.2 21.1 21.5 22.2 22.4 23.1 24.5 25.7 28.5 34.6 38.5 43.0 55.6 71.3 77.8 A. Measures of Central Tendency We are to calculate: Mean, Median, Mode The data (already ordered) is: 0.8, 1.4, 1.8, 1.9, 3.2, 3.6, 4.5, 4.5, 4.6, 6.2, 6.5, 7.7, 7.9, 9.9, 10.2, 10.3, 10.9, 11.1, 11.1, 11.6, 11.8, 12.0, 13.1, 13.5, 13.7, 14.1, 14.2, 14.7, 15.0, 15.1, 15.5,…arrow_forwardA tournament is a complete directed graph, for each pair of vertices x, y either (x, y) is an arc or (y, x) is an arc. One can think of this as a round robin tournament, where the vertices represent teams, each pair plays exactly once, with the direction of the arc indicating which team wins. (a) Prove that every tournament has a direct Hamiltonian path. That is a labeling of the teams V1, V2,..., Un so that vi beats Vi+1. That is a labeling so that team 1 beats team 2, team 2 beats team 3, etc. (b) A digraph is strongly connected if there is a directed path from any vertex to any other vertex. Equivalently, there is no partition of the teams into groups A, B so that every team in A beats every team in B. Prove that every strongly connected tournament has a directed Hamiltonian cycle. Use this to show that for any team there is an ordering as in part (a) for which the given team is first. (c) A king in a tournament is a vertex such that there is a direct path of length at most 2 to any…arrow_forward
- Use a graphing utility to find the point of intersection, if any, of the graphs of the functions. Round your result to three decimal places. (Enter NONE in any unused answer blanks.) y = 100e0.01x (x, y) = y = 11,250 ×arrow_forwardhow to construct the following same table?arrow_forwardThe following is known. The complete graph K2t on an even number of vertices has a 1- factorization (equivalently, its edges can be colored with 2t - 1 colors so that the edges incident to each vertex are distinct). This implies that the complete graph K2t+1 on an odd number of vertices has a factorization into copies of tK2 + K₁ (a matching plus an isolated vertex). A group of 10 people wants to set up a 45 week tennis schedule playing doubles, each week, the players will form 5 pairs. One of the pairs will not play, the other 4 pairs will each play one doubles match, two of the pairs playing each other and the other two pairs playing each other. Set up a schedule with the following constraints: Each pair of players is a doubles team exactly 4 times; during those 4 matches they see each other player exactly once; no two doubles teams play each other more than once. (a) Find a schedule. Hint - think about breaking the 45 weeks into 9 blocks of 5 weeks. Use factorizations of complete…arrow_forward
- . The two person game of slither is played on a graph. Players 1 and 2 take turns, building a path in the graph. To start, Player 1 picks a vertex. Player 2 then picks an edge incident to the vertex. Then, starting with Player 1, players alternate turns, picking a vertex not already selected that is adjacent to one of the ends of the path created so far. The first player who cannot select a vertex loses. (This happens when all neighbors of the end vertices of the path are on the path.) Prove that Player 2 has a winning strategy if the graph has a perfect matching and Player 1 has a winning strategy if the graph does not have a perfect matching. In each case describe a strategy for the winning player that guarantees that they will always be able to select a vertex. The strategy will be based on using a maximum matching to decide the next choice, and will, for one of the cases involve using the fact that maximality means no augmenting paths. Warning, the game slither is often described…arrow_forwardLet D be a directed graph, with loops allowed, for which the indegree at each vertex is at most k and the outdegree at each vertex is at most k. Prove that the arcs of D can be colored so that the arcs entering each vertex must have distinct colors and the arcs leaving each vertex have distinct colors. An arc entering a vertex may have the same color as an arc leaving it. It is probably easiest to make use of a known result about edge coloring. Think about splitting each vertex into an ‘in’ and ‘out’ part and consider what type of graph you get.arrow_forward3:56 wust.instructure.com Page 0 Chapter 5 Test Form A of 2 - ZOOM + | Find any real numbers for which each expression is undefined. 2x 4 1. x Name: Date: 1. 3.x-5 2. 2. x²+x-12 4x-24 3. Evaluate when x=-3. 3. x Simplify each rational expression. x²-3x 4. 2x-6 5. x²+3x-18 x²-9 6. Write an equivalent rational expression with the given denominator. 2x-3 x²+2x+1(x+1)(x+2) Perform the indicated operation and simplify if possible. x²-16 x-3 7. 3x-9 x²+2x-8 x²+9x+20 5x+25 8. 4.x 2x² 9. x-5 x-5 3 5 10. 4x-3 8x-6 2 3 11. x-4 x+4 x 12. x-2x-8 x²-4 ← -> Copyright ©2020 Pearson Education, Inc. + 5 4. 5. 6. 7. 8. 9. 10. 11. 12. T-97arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Big Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin HarcourtGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill
- College Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage LearningAlgebra for College StudentsAlgebraISBN:9781285195780Author:Jerome E. Kaufmann, Karen L. SchwittersPublisher:Cengage Learning

Big Ideas Math A Bridge To Success Algebra 1: Stu...
Algebra
ISBN:9781680331141
Author:HOUGHTON MIFFLIN HARCOURT
Publisher:Houghton Mifflin Harcourt

Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill


College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning


Algebra for College Students
Algebra
ISBN:9781285195780
Author:Jerome E. Kaufmann, Karen L. Schwitters
Publisher:Cengage Learning
Sequences and Series Introduction; Author: Mario's Math Tutoring;https://www.youtube.com/watch?v=m5Yn4BdpOV0;License: Standard YouTube License, CC-BY
Introduction to sequences; Author: Dr. Trefor Bazett;https://www.youtube.com/watch?v=VG9ft4_dK24;License: Standard YouTube License, CC-BY