Egyptian mathematics had a unique way of writing fractions as sums of unit fractions – that is, fractions of the form 1 n . For example, the fraction 2 9 could be written as 1 6 + 1 18 and also as 1 5 + 1 45 . They would not represent a number like 2 3 as 1 3 + 1 3 ; they would use two different unit fractions. Unit fractions were written by placing the symbol , which looked somewhat like an eye, over the numeral. For example, 1 3 could be written as . In exercises 79 − 82 , write the given fractions as the sum of unit fractions, using our common notation rather than the cumbersome Egyptian notation. (There may be several correct answers but we will give only one.) 2 7
Egyptian mathematics had a unique way of writing fractions as sums of unit fractions – that is, fractions of the form 1 n . For example, the fraction 2 9 could be written as 1 6 + 1 18 and also as 1 5 + 1 45 . They would not represent a number like 2 3 as 1 3 + 1 3 ; they would use two different unit fractions. Unit fractions were written by placing the symbol , which looked somewhat like an eye, over the numeral. For example, 1 3 could be written as . In exercises 79 − 82 , write the given fractions as the sum of unit fractions, using our common notation rather than the cumbersome Egyptian notation. (There may be several correct answers but we will give only one.) 2 7
Solution Summary: The author explains how to write the tion 27 as a sum of unit tions.
Egyptian mathematics had a unique way of writing fractions as sums of unit fractions – that is, fractions of the form
1
n
. For example, the fraction
2
9
could be written as
1
6
+
1
18
and also as
1
5
+
1
45
. They would not represent a number like
2
3
as
1
3
+
1
3
; they would use two different unit fractions. Unit fractions were written by placing the symbol , which looked somewhat like an eye, over the numeral. For example,
1
3
could be written as. In exercises
79
−
82
, write the given fractions as the sum of unit fractions, using our common notation rather than the cumbersome Egyptian notation. (There may be several correct answers but we will give only one.)
Two cables tied together at C are loaded as shown. Given: Q = 130 lb.
8
30°
C
B
Q
3
4
Draw the free-body diagram needed to determine the range of values of P for which both cables remain taut.
Cable AB is 103 ft long and the tension in the cable is 3900 lb.
56 ft
A
50°
20°
B
x
C
Identify the angles 0.0, and 8, that define the direction of force.
1
By
N
2
Match each of the options above to the items below.
142.1°
57.1°
73.3°
3
8.
In the given figure, P = 51 lb .
65°
C
25°
35°
75 lb
P
Determine the corresponding magnitude of the resultant.
The corresponding magnitude of the resultant is|
lb.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.