Egyptian mathematics had a unique way of writing fractions as sums of unit fractions – that is, fractions of the form 1 n . For example, the fraction 2 9 could be written as 1 6 + 1 18 and also as 1 5 + 1 45 . They would not represent a number like 2 3 as 1 3 + 1 3 ; they would use two different unit fractions. Unit fractions were written by placing the symbol , which looked somewhat like an eye, over the numeral. For example, 1 3 could be written as . In exercises 79 − 82 , write the given fractions as the sum of unit fractions, using our common notation rather than the cumbersome Egyptian notation. (There may be several correct answers but we will give only one.) 2 3
Egyptian mathematics had a unique way of writing fractions as sums of unit fractions – that is, fractions of the form 1 n . For example, the fraction 2 9 could be written as 1 6 + 1 18 and also as 1 5 + 1 45 . They would not represent a number like 2 3 as 1 3 + 1 3 ; they would use two different unit fractions. Unit fractions were written by placing the symbol , which looked somewhat like an eye, over the numeral. For example, 1 3 could be written as . In exercises 79 − 82 , write the given fractions as the sum of unit fractions, using our common notation rather than the cumbersome Egyptian notation. (There may be several correct answers but we will give only one.) 2 3
Solution Summary: The author explains how to write the tion 23 as a sum of unit tions by finding the prime factors of the denominator.
Egyptian mathematics had a unique way of writing fractions as sums of unit fractions – that is, fractions of the form
1
n
. For example, the fraction
2
9
could be written as
1
6
+
1
18
and also as
1
5
+
1
45
. They would not represent a number like
2
3
as
1
3
+
1
3
; they would use two different unit fractions. Unit fractions were written by placing the symbol , which looked somewhat like an eye, over the numeral. For example,
1
3
could be written as. In exercises
79
−
82
, write the given fractions as the sum of unit fractions, using our common notation rather than the cumbersome Egyptian notation. (There may be several correct answers but we will give only one.)
3. Let
sin (22) + cos (T2)
f(z) =
z(22 + 1)(z+1)
Compute f(z)dz over each of the contours/closed curves C1, C2, C3 and C4 shown
below.
L
10
-C
x
Don't use any Al tool
show ur answer
pe
n and paper then take
what is the slope of the linear equation-5x+2y-10=0
1. Evaluate
(2,5)
(3x+y)dx+(2y-x)dy
(0,1)
(i) along the straight lines from (0, 1) to (2, 1) and then from (2, 1) to (2,5), and (ii)
along the parabola y = x² + 1.
Don't use any Al tool
show ur answer in pe
n and paper then take
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.