Elements Of Modern Algebra
8th Edition
ISBN: 9781285463230
Author: Gilbert, Linda, Jimmie
Publisher: Cengage Learning,
expand_more
expand_more
format_list_bulleted
Question
Chapter 5.1, Problem 55E
(a)
To determine
To prove:
(b)
To determine
The elements in
(c)
To determine
Whether
(d)
To determine
Whether unity element in
(e)
To determine
All units in
(f)
To determine
All zero divisors in
(g)
To determine
All idempotent elements in
(h)
To determine
All nilpotent elements in
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Q1lal Let X be an arbitrary infinite set and let r the family of all subsets
F of X which do not contain a particular point x, EX and the
complements F of all finite subsets F of X show that (X.r) is a topology.
bl The nbhd system N(x) at x in a topological space X has the following
properties
NO- N(x) for any xX
N1- If N EN(x) then x€N
N2- If NEN(x), NCM then MeN(x)
N3- If NEN(x), MEN(x) then NOMEN(x)
N4- If N = N(x) then 3M = N(x) such that MCN then MeN(y) for any
уем
Show that there exist a unique topology τ on X.
Q2\a\let (X,r) be the topology space and BST show that ẞ is base for a
topology on X iff for any G open set xEG then there exist A Eẞ such
that x E ACG.
b\Let ẞ is a collection of open sets in X show that is base for a
topology on X iff for each xex the collection B, (BEB\xEB) is is a
nbhd base at x.
-
Q31 Choose only two:
al Let A be a subspace of a space X show that FCA is closed iff
F KOA, K is closed set in X.
الرياضيات
b\ Let X and Y be two topological space and f:X -…
Q1\ Let X be a topological space and let Int be the interior
operation defined on P(X) such that
1₁.Int(X) = X
12. Int (A) CA for each A = P(X)
13. Int (int (A) = Int (A) for each A = P(X)
14. Int (An B) = Int(A) n Int (B) for each A, B = P(X)
15. A is open iff Int (A) = A
Show that there exist a unique topology T on X.
Q2\ Let X be a topological space and suppose that a nbhd
base has been fixed at each x E X and A SCX show that A open
iff A contains a basic nbdh of each its point
Q3\ Let X be a topological space and and A CX show that A
closed set iff every limit point of A is in A.
A'S A
ACA
Q4\ If ẞ is a collection of open sets in X show that ẞ is a base
for a topology on X iff for each x E X then ẞx = {BE B|x E B}
is a nbhd base at x.
Q5\ If A subspace of a topological space X, if x Є A show
that V is nbhd of x in A iff V = Un A where U is nbdh of x in
X.
+
Theorem: Let be a function from a topological
space (X,T) on to a non-empty set y then
is a quotient map iff
vesy if f(B) is closed in X then & is
>Y. ie Bclosed in
bp
closed in the quotient topology induced by f
iff (B) is closed in x-
التاريخ
Acy
الموضوع :
Theorem:- IP & and I are topological space
and fix sy is continuous
او
function and either
open or closed then the topology Cony is the
quatient topology p
proof:
Theorem: Lety have the quotient topology
induced by map f of X onto y.
The-x:
then an arbirary map g:y 7 is continuous
7.
iff gof: x > z is
"g of continuous
Continuous function
f
Chapter 5 Solutions
Elements Of Modern Algebra
Ch. 5.1 - True or False
Label each of the following...Ch. 5.1 - True or False Label each of the following...Ch. 5.1 - True or False Label each of the following...Ch. 5.1 - True or False
Label each of the following...Ch. 5.1 - True or False Label each of the following...Ch. 5.1 - True or False Label each of the following...Ch. 5.1 - True or False Label each of the following...Ch. 5.1 - True or False
Label each of the following...Ch. 5.1 - True or False Label each of the following...Ch. 5.1 - True or False Label each of the following...
Ch. 5.1 - Exercises
Confirm the statements made in Example...Ch. 5.1 - Exercises
2. Decide whether each of the following...Ch. 5.1 - Exercises
3. Let Using addition and...Ch. 5.1 - Prob. 4ECh. 5.1 - Exercises
5. Let Define addition and...Ch. 5.1 - Exercises Work exercise 5 using U=a. Exercise5 Let...Ch. 5.1 - Exercises Find all zero divisors in n for the...Ch. 5.1 - Exercises
8. For the given values of , find all...Ch. 5.1 - Exercises Prove Theorem 5.3:A subset S of the ring...Ch. 5.1 - Exercises
10. Prove Theorem 5.4:A subset of the...Ch. 5.1 - Assume R is a ring with unity e. Prove Theorem...Ch. 5.1 - 12. (See Example 4.) Prove the right distributive...Ch. 5.1 - 13. Complete the proof of Theorem by showing that...Ch. 5.1 - Let R be a ring, and let x,y, and z be arbitrary...Ch. 5.1 - 15. Let and be elements of a ring. Prove that...Ch. 5.1 - 16. Suppose that is an abelian group with respect...Ch. 5.1 - If R1 and R2 are subrings of the ring R, prove...Ch. 5.1 - 18. Find subrings and of such that is not a...Ch. 5.1 - 19. Find a specific example of two elements and ...Ch. 5.1 - Prob. 20ECh. 5.1 - 21. Define a new operation of addition in by ...Ch. 5.1 - 22. Define a new operation of addition in by and...Ch. 5.1 - Let R be a ring with unity and S be the set of all...Ch. 5.1 - Prove that if a is a unit in a ring R with unity,...Ch. 5.1 - Prob. 25ECh. 5.1 - Prob. 26ECh. 5.1 - Suppose that a,b, and c are elements of a ring R...Ch. 5.1 - Prob. 28ECh. 5.1 - 29. For a fixed element of a ring , prove that...Ch. 5.1 - Prob. 30ECh. 5.1 - Let R be a ring. Prove that the set S={...Ch. 5.1 - 32. Consider the set .
a. Construct...Ch. 5.1 - Consider the set S={ [ 0 ],[ 2 ],[ 4 ],[ 6 ],[ 8...Ch. 5.1 - The addition table and part of the multiplication...Ch. 5.1 - 35. The addition table and part of the...Ch. 5.1 - Prob. 36ECh. 5.1 - 37. Let and be elements in a ring. If is a zero...Ch. 5.1 - An element x in a ring is called idempotent if...Ch. 5.1 - 39. (See Exercise 38.) Show that the set of all...Ch. 5.1 - 40. Let be idempotent in a ring with unity....Ch. 5.1 - 41. Decide whether each of the following sets is...Ch. 5.1 - 42. Let .
a. Show that is a...Ch. 5.1 - 43. Let .
a. Show that is a...Ch. 5.1 - 44. Consider the set of all matrices of the...Ch. 5.1 - Prob. 45ECh. 5.1 - 46. Let be a set of elements containing the unity,...Ch. 5.1 - Prob. 47ECh. 5.1 - Prob. 48ECh. 5.1 - An element a of a ring R is called nilpotent if...Ch. 5.1 - 50. Let and be nilpotent elements that satisfy...Ch. 5.1 - Let R and S be arbitrary rings. In the Cartesian...Ch. 5.1 - 52. (See Exercise 51.)
a. Write out the...Ch. 5.1 - Prob. 53ECh. 5.1 - Prob. 54ECh. 5.1 - Prob. 55ECh. 5.1 - Suppose R is a ring in which all elements x are...Ch. 5.2 - True or False
Label each of the following...Ch. 5.2 - [Type here]
True or False
Label each of the...Ch. 5.2 - [Type here]
True or False
Label each of the...Ch. 5.2 - Label each of the following as either true or...Ch. 5.2 - Confirm the statements made in Example 3 by...Ch. 5.2 - Consider the set ={[0],[2],[4],[6],[8]}10, with...Ch. 5.2 - Consider the set...Ch. 5.2 - [Type here]
Examples 5 and 6 of Section 5.1 showed...Ch. 5.2 - Examples 5 and 6 of Section 5.1 showed that P(U)...Ch. 5.2 - [Type here]
Examples 5 and 6 of Section 5.1 showed...Ch. 5.2 - [Type here]
7. Let be the set of all ordered pairs...Ch. 5.2 - Let S be the set of all 2X2 matrices of the form...Ch. 5.2 - Work exercise 8 using be the set of all matrices...Ch. 5.2 - Work exercise 8 using S be the set of all matrices...Ch. 5.2 - Let R be the set of all matrices of the form...Ch. 5.2 - Prob. 12ECh. 5.2 - 13. Work Exercise 12 using , the Gaussian integers...Ch. 5.2 - 14. Letbe a commutative ring with unity in which...Ch. 5.2 - [Type here]
15. Give an example of an infinite...Ch. 5.2 - Prove that if a subring R of an integral domain D...Ch. 5.2 - If e is the unity in an integral domain D, prove...Ch. 5.2 - [Type here]
18. Prove that only idempotent...Ch. 5.2 - a. Give an example where a and b are not zero...Ch. 5.2 - 20. Find the multiplicative inverse of the given...Ch. 5.2 - [Type here]
21. Prove that ifand are integral...Ch. 5.2 - Prove that if R and S are fields, then the direct...Ch. 5.2 - [Type here]
23. Let be a Boolean ring with unity....Ch. 5.2 - If a0 in a field F, prove that for every bF the...Ch. 5.2 - Suppose S is a subset of an field F that contains...Ch. 5.3 - True or False Label each of the following...Ch. 5.3 - Prob. 2TFECh. 5.3 - Prob. 3TFECh. 5.3 - Prob. 4TFECh. 5.3 - Prob. 5TFECh. 5.3 - Prove that the multiplication defined 5.24 is a...Ch. 5.3 - Prove that addition is associative in Q.Ch. 5.3 - Prob. 3ECh. 5.3 - Prob. 4ECh. 5.3 - Prob. 5ECh. 5.3 - Prob. 6ECh. 5.3 - 7. Prove that on a given set of rings, the...Ch. 5.3 - Prob. 8ECh. 5.3 - Prob. 9ECh. 5.3 - Since this section presents a method for...Ch. 5.3 - Prob. 11ECh. 5.3 - Prob. 12ECh. 5.3 - Prob. 13ECh. 5.3 - 14. Let be the set of all real numbers of the...Ch. 5.3 - Prob. 15ECh. 5.3 - Prove that any field that contains an intergral...Ch. 5.3 - Prob. 17ECh. 5.3 - 18. Let be the smallest subring of the field of...Ch. 5.4 - True or False Label each of the following...Ch. 5.4 - True or False Label each of the following...Ch. 5.4 - True or False
Label each of the following...Ch. 5.4 - True or False Label each of the following...Ch. 5.4 - Prob. 5TFECh. 5.4 - Complete the proof of Theorem 5.30 by providing...Ch. 5.4 - 2. Prove the following statements for arbitrary...Ch. 5.4 - Prove the following statements for arbitrary...Ch. 5.4 - Suppose a and b have multiplicative inverses in an...Ch. 5.4 - 5. Prove that the equation has no solution in an...Ch. 5.4 - 6. Prove that if is any element of an ordered...Ch. 5.4 - For an element x of an ordered integral domain D,...Ch. 5.4 - If x and y are elements of an ordered integral...Ch. 5.4 - 9. If denotes the unity element in an integral...Ch. 5.4 - 10. An ordered field is an ordered integral domain...Ch. 5.4 - 11. (See Exercise 10.) According to Definition...Ch. 5.4 - 12. (See Exercise 10 and 11.) If each is...Ch. 5.4 - 13. Prove that if and are rational numbers such...Ch. 5.4 - 14. a. If is an ordered integral domain, prove...Ch. 5.4 - 15. (See Exercise .) If and with and in ,...Ch. 5.4 - If x and y are positive rational numbers, prove...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- For the problem below, what are the possible solutions for x? Select all that apply. 2 x²+8x +11 = 0 x2+8x+16 = (x+4)² = 5 1116arrow_forwardFor the problem below, what are the possible solutions for x? Select all that apply. x² + 12x - 62 = 0 x² + 12x + 36 = 62 + 36 (x+6)² = 98arrow_forwardSelect the polynomials below that can be solved using Completing the Square as written. 6m² +12m 8 = 0 Oh²-22x 7 x²+4x-10= 0 x² + 11x 11x 4 = 0arrow_forward
- Prove that the usual toplogy is firast countble or hot and second countble. ①let cofinte toplogy onx show that Sivast countble or hot and second firast. 3) let (x,d) be matricspace show that is first and second countble. 6 Show that Indiscret toplogy is firstand Second op countble or not.arrow_forwarda) Find the scalars p, q, r, s, k1, and k2. b) Is there a different linearly independent eigenvector associated to either k1 or k2? If yes,find it. If no, briefly explain.arrow_forwardThis box plot represents the score out of 90 received by students on a driver's education exam. 75% of the students passed the exam. What is the minimum score needed to pass the exam? Submitting x and Whickers Graph Low 62, C 62 66 70 74 78 82 86 90 Driver's education exam score (out of 90)arrow_forward
- How many different rectangles can be made whose side lengths, in centimeters, are counting numbers and whose are is 1,159 square centimeters? Draw and label all possible rectangles.arrow_forwardCo Given show that Solution Take home Су-15 1994 +19 09/2 4 =a log суто - 1092 ж = a-1 2+1+8 AI | SHOT ON S4 INFINIX CAMERAarrow_forwarda Question 7. If det d e f ghi V3 = 2. Find det -1 2 Question 8. Let A = 1 4 5 0 3 2. 1 Find adj (A) 2 Find det (A) 3 Find A-1 2g 2h 2i -e-f -d 273 2a 2b 2carrow_forward
- Question 1. Solve the system - x1 x2 + 3x3 + 2x4 -x1 + x22x3 + x4 2x12x2+7x3+7x4 Question 2. Consider the system = 1 =-2 = 1 3x1 - x2 + ax3 = 1 x1 + 3x2 + 2x3 x12x2+2x3 = -b = 4 1 For what values of a, b will the system be inconsistent? 2 For what values of a, b will the system have only one solution? For what values of a, b will the saystem have infinitely many solutions?arrow_forwardQuestion 5. Let A, B, C ben x n-matrices, S is nonsigular. If A = S-1 BS, show that det (A) = det (B) Question 6. For what values of k is the matrix A = (2- k -1 -1 2) singular? karrow_forward1 4 5 Question 3. Find A-1 (if exists), where A = -3 -1 -2 2 3 4 Question 4. State 4 equivalent conditions for a matrix A to be nonsingulararrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningAlgebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal LittellElementary Geometry For College Students, 7eGeometryISBN:9781337614085Author:Alexander, Daniel C.; Koeberlein, Geralyn M.Publisher:Cengage,
- Trigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage LearningMathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Algebra: Structure And Method, Book 1
Algebra
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:McDougal Littell
Elementary Geometry For College Students, 7e
Geometry
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Cengage,
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning
Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Ring Examples (Abstract Algebra); Author: Socratica;https://www.youtube.com/watch?v=_RTHvweHlhE;License: Standard YouTube License, CC-BY
Definition of a Ring and Examples of Rings; Author: The Math Sorcerer;https://www.youtube.com/watch?v=8yItsdvmy3c;License: Standard YouTube License, CC-BY