In Exercises 41 –50, subtract the polynomials. Assume that all variable exponents represent whole numbers.
Want to see the full answer?
Check out a sample textbook solutionChapter 5 Solutions
EBK INTERMEDIATE ALGEBRA FOR COLLEGE ST
- In Exercises 132–137, factor each polynomial. Assume that all variable exponents represent whole numbers. 132. 9x2" + x" – 8 133. 4x2n – 9x" + 5 134. an+2 – a"+2 – 6a? 135. b2n+2 + 3b"+2 10b2 136. 3c"+2 10c"+1 + 3c" 137. 2d"+2 5d"+1 + 3d"arrow_forwardIn Exercises 126–129, determine whether each statement is true or false. If the statement is false, make the necessary change(s) to produce a true statement. 126. Once a GCF is factored from 6y – 19y + 10y“, the remaining trinomial factor is prime. 127. One factor of 8y² – 51y + 18 is 8y – 3. 128. We can immediately tell that 6x? – 11xy – 10y? is prime because 11 is a prime number and the polynomial contains two variables. 129. A factor of 12x2 – 19xy + 5y² is 4x – y.arrow_forwardIn Exercises 83–90, perform the indicated operation or operations. 83. (3x + 4y)? - (3x – 4y) 84. (5x + 2y) - (5x – 2y) 85. (5x – 7)(3x – 2) – (4x – 5)(6x – 1) 86. (3x + 5)(2x - 9) - (7x – 2)(x – 1) 87. (2x + 5)(2r - 5)(4x? + 25) 88. (3x + 4)(3x – 4)(9x² + 16) (2x – 7)5 89. (2x – 7) (5x – 3)6 90. (5x – 3)4arrow_forward
- For Exercises 115–120, factor the expressions over the set of complex numbers. For assistance, consider these examples. • In Section R.3 we saw that some expressions factor over the set of integers. For example: x - 4 = (x + 2)(x – 2). • Some expressions factor over the set of irrational numbers. For example: - 5 = (x + V5)(x – V5). To factor an expression such as x + 4, we need to factor over the set of complex numbers. For example, verify that x + 4 = (x + 2i)(x – 2i). 115. а. х - 9 116. а. х? - 100 117. а. х - 64 b. x + 9 b. + 100 b. x + 64 118. а. х — 25 119. а. х— 3 120. а. х — 11 b. x + 25 b. x + 3 b. x + 11arrow_forwardIn Exercises 30–33, factor the greatest common factor from each polynomial. 30. 16x3 + 24x² 31. 2x 36x2 32. 21x?y – 14xy² + 7xy 33. 18r'y? – 27x²yarrow_forwardIn Exercises 14–16, divide as indicated. 14. (12x*y³ + 16x?y³ – 10x²y²) ÷ (4x?y) 15. (9x – 3x2 – 3x + 4) ÷ (3x + 2) 16. (3x4 + 2x3 – 8x + 6) ÷ (x² – 1)arrow_forward
- In Exercises 115–116, express each polynomial in standard form-that is, in descending powers of x. a. Write a polynomial that represents the area of the large rectangle. b. Write a polynomial that represents the area of the small, unshaded rectangle. c. Write a polynomial that represents the area of the shaded blue region. 115. -x + 9- -x +5- x + 3 x + 15 -x + 4- x + 2 116. x + 3 x + 1arrow_forwardExpress (5 – 3i)3 in the form a + ib.arrow_forwardExpand (2x+y)5arrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageAlgebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal Littell