The enthalpy change for the reaction using standard enthalpies has to be determined Concept Introduction: The standard enthalpy of formation is the enthalpy change for the formation of 1mol of the compound directly from its component elements in their standard states. Enthalpy change for the reaction Δ r H 0 = ΣnΔ f H 0 (products) - ΣnΔ f H 0 (reactants)
The enthalpy change for the reaction using standard enthalpies has to be determined Concept Introduction: The standard enthalpy of formation is the enthalpy change for the formation of 1mol of the compound directly from its component elements in their standard states. Enthalpy change for the reaction Δ r H 0 = ΣnΔ f H 0 (products) - ΣnΔ f H 0 (reactants)
The enthalpy change for the reaction using standard enthalpies has to be determined
Concept Introduction:
The standard enthalpy of formation is the enthalpy change for the formation of 1mol of the compound directly from its component elements in their standard states.
Enthalpy change for the reaction ΔrH0=ΣnΔfH0(products)-ΣnΔfH0(reactants)
(a)
Expert Solution
Explanation of Solution
Given,
ΔfH0(C)= 0 KJ/mol
ΔfH0(H2O)=-241.8kJ/mol
ΔfH0(CO)=-110.54kJ/mol
ΔfH0(H2)=0J/mol
Enthalpy change for the reaction ΔrH0=ΣnΔfH0(products)-ΣnΔfH0(reactants)
ΔrH° =(-110.54+0)-(0+-241.8)
ΔrH0=131.26 kJ/mol
So, the change in enthalpy of the reaction is 131.3kJ/mol
(b)
Interpretation Introduction
Interpretation:
The nature of the reaction has to be identified.
Concept Introduction:
The standard enthalpy of formation is the enthalpy change for the formation of 1mol of the compound directly from its component elements in their standard states.
Enthalpy change for the reaction ΔrH0=ΣnΔfH0(products)-ΣnΔfH0(reactants)
(b)
Expert Solution
Explanation of Solution
Given,
ΔfH0(C)= 0 KJ/mol
ΔfH0(H2O)=-241.8kJ/mol
ΔfH0(CO)=-110.54kJ/mol
ΔfH0(H2)=0J/mol
Enthalpy change for the reaction ΔrH0=ΣnΔfH0(products)-ΣnΔfH0(reactants)
ΔrH° =(-110.54+0)-(0+-241.8)
ΔrH0=131.26 kJ/mol
The change in enthalpy is +131.3kJ/mol, so it is endothermic reaction.
(c)
Interpretation Introduction
Interpretation:
The enthalpy change if 1000.0kg of carbon converted to water gas has to be calculated.
Concept Introduction:
The standard enthalpy of formation is the enthalpy change for the formation of 1mol of the compound directly from its component elements in their standard states.
Enthalpy change for the reaction ΔrH0=ΣnΔfH0(products)-ΣnΔfH0(reactants)
(c)
Expert Solution
Explanation of Solution
The change in enthalpy is +131.3kJ/mol,
Heat evolved when 1000Kg of carbon is converted to coal:
Please draw the structure in the box that is consistent with all the spectral data and
alphabetically label all of the equivalent protons in the structure (Ha, Hb, Hc....) in order to assign all
the proton NMR peaks. The integrations are computer generated and approximate the number of
equivalent protons. Molecular formula: C13H1802
14
13
12
11
10
11 (ppm)
Structure with assigned H peaks
2.08
3.13
A 0.10 M solution of acetic acid (CH3COOH, Ka = 1.8 x 10^-5) is titrated with a 0.0250 M solution of magnesium hydroxide (Mg(OH)2). If 10.0 mL of the acid solution is titrated with 10.0 mL of the base solution, what is the pH of the resulting solution?
Firefly luciferin exhibits three rings. Identify which of the rings are aromatic. Identify which lone pairs are involved in establishing aromaticity. The lone pairs are labeled A-D below.
Chapter 5 Solutions
OWLv2 6-Months Printed Access Card for Kotz/Treichel/Townsend's Chemistry & Chemical Reactivity, 9th, 9th Edition
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Calorimetry Concept, Examples and Thermochemistry | How to Pass Chemistry; Author: Melissa Maribel;https://www.youtube.com/watch?v=nSh29lUGj00;License: Standard YouTube License, CC-BY