
OWLv2 6-Months Printed Access Card for Kotz/Treichel/Townsend's Chemistry & Chemical Reactivity, 9th, 9th Edition
9th Edition
ISBN: 9781285460680
Author: Kotz, Treichel, Townsend
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 5, Problem 107SCQ
Interpretation Introduction
Interpretation:
The mass of methane to burn to heat the air has to be calculated.
Concept Introduction:
Heat energy required to raise the temperature of 1g of substance by 1K.Energy gained or lost can be calculated using the below equation.
Where, q= energy gained or lost for a given mass of substance (m), C =specific heat capacity,
The standard molar enthalpy of formation is the enthalpy change
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
hybridization of nitrogen of complex molecules
Using reaction free energy to predict equilibrium composition
Consider the following equilibrium:
2NO2 (g) = N2O4(g)
AGº = -5.4 kJ
Now suppose a reaction vessel is filled with 4.53 atm of dinitrogen tetroxide (N2O4) at 279. °C. Answer the following questions about this system:
Under these conditions, will the pressure of N2O4 tend to rise or fall?
Is it possible to reverse this tendency by adding NO2?
In other words, if you said the pressure of N2O4 will tend to rise, can that
be changed to a tendency to fall by adding NO2? Similarly, if you said the
pressure of N2O4 will tend to fall, can that be changed to a tendency to
'2'
rise by adding NO2?
If you said the tendency can be reversed in the second question, calculate
the minimum pressure of NO 2 needed to reverse it.
Round your answer to 2 significant digits.
00
rise
☐ x10
fall
yes
no
☐ atm
G
Ar
1
Why do we analyse salt?
Chapter 5 Solutions
OWLv2 6-Months Printed Access Card for Kotz/Treichel/Townsend's Chemistry & Chemical Reactivity, 9th, 9th Edition
Ch. 5.2 - You did an experiment in which you found that 59.8...Ch. 5.2 - A 15.5-g piece of chromium, heated to 100.0 C, is...Ch. 5.3 - Calculate the amount of energy necessary to raise...Ch. 5.3 - To make a glass of iced tea, you pour 250 mL of...Ch. 5.4 - Nitrogen gas (2.75 L) is confined in a cylinder...Ch. 5.5 - The combustion of ethane, C2H6, has an enthalpy...Ch. 5.6 - Assume 200. mL of 0.400 M HCl is mixed with 200....Ch. 5.6 - A 1.00-g sample of ordinary table sugar (sucrose,...Ch. 5.7 - Use Hesss law to calculate the enthalpy change for...Ch. 5.7 - Calculate the standard enthalpy of combustion for...
Ch. 5.8 - The standard enthalpies of formation of KNO3(s)...Ch. 5.8 - Prob. 1.2ACPCh. 5.8 - The decomposition of nitroglycerin (C3H5N3O9)...Ch. 5.8 - Prob. 2.1ACPCh. 5.8 - Prob. 2.2ACPCh. 5.8 - Prob. 2.3ACPCh. 5.8 - Prob. 2.4ACPCh. 5.8 - Prob. 2.5ACPCh. 5 - Define the terms system and surroundings. What...Ch. 5 - What determines the directionality of energy...Ch. 5 - Identify whether the following processes are...Ch. 5 - Identify whether the following processes are...Ch. 5 - The molar heat capacity of mercury is 28.1 J/mol ...Ch. 5 - The specific heat capacity of benzene (C6H6) is...Ch. 5 - The specific heat capacity of copper metal is...Ch. 5 - How much energy as heat is required to raise the...Ch. 5 - The initial temperature of a 344-g sample of iron...Ch. 5 - After absorbing 1.850 kJ of energy as heat, the...Ch. 5 - A 45.5-g sample of copper at 99.8 C is dropped...Ch. 5 - One beaker contains 156 g of water at 22 C, and a...Ch. 5 - A 182-g sample of gold at some temperature was...Ch. 5 - When 108 g of water at a temperature of 22.5 C is...Ch. 5 - A 13.8-g piece of zinc is heated to 98.8 C in...Ch. 5 - A 237-g piece of molybdenum, initially at 100.0 C,...Ch. 5 - How much energy is evolved as heat when 1.0 L of...Ch. 5 - The energy required to melt 1.00 g of ice at 0 C...Ch. 5 - How much energy is required to vaporize 125 g of...Ch. 5 - Chloromethane, CH3CI, arises from microbial...Ch. 5 - The freezing point of mercury is 38.8 C. What...Ch. 5 - What quantity of energy, in joules, is required to...Ch. 5 - Ethanol, C2HsOH, boils at 78.29 C. How much...Ch. 5 - A 25.0-mL sample of benzene at 19.9 C was cooled...Ch. 5 - As a gas cools, it is compressed from 2.50 L to...Ch. 5 - A balloon expands from 0.75 L to 1.20 L as it is...Ch. 5 - A balloon does 324 J of work on the surroundings...Ch. 5 - As the gas trapped in a cylinder with a movable...Ch. 5 - When 745 J of energy in the form of heat is...Ch. 5 - The internal energy of a gas decreases by 1.65 kJ...Ch. 5 - A volume of 1.50 L of argon gas is confined in a...Ch. 5 - Nitrogen gas is confined in a cylinder with a...Ch. 5 - Nitrogen monoxide, a gas recently found to be...Ch. 5 - Calcium carbide, CaC2, is manufactured by the...Ch. 5 - Isooctane (2,2,4-trimethylpentane), one of the...Ch. 5 - Acetic acid. CH3CO2H, is made industrially by the...Ch. 5 - You mix 125 mL of 0.250 M CsOH with 50.0 mL of...Ch. 5 - You mix 125 mL of 0.250 M CsOH with 50.0 mL of...Ch. 5 - A piece of titanium metal with a mass of 20.8 g is...Ch. 5 - A piece of chromium metal with a mass of 24.26 g...Ch. 5 - Adding 5.44 g of NH4NO3(s) to 150.0 g of water in...Ch. 5 - You should use care when dissolving H2SO4 in water...Ch. 5 - Sulfur (2.56 g) was burned in a constant-volume...Ch. 5 - Suppose you burned 0.300 g of C(s) in an excess of...Ch. 5 - Suppose you burned 1.500 g of benzoic acid,...Ch. 5 - A 0.692-g sample of glucose, C6H12O6, was burned...Ch. 5 - An ice calorimeter can be used to determine the...Ch. 5 - A 9.36-g piece of platinum was heated to 98.6 C in...Ch. 5 - The enthalpy changes for the following reactions...Ch. 5 - The enthalpy changes of the following reactions...Ch. 5 - Enthalpy changes for the following reactions can...Ch. 5 - You wish to know the enthalpy change for the...Ch. 5 - Write a balanced chemical equation for the...Ch. 5 - Write a balanced chemical equation for the...Ch. 5 - (a) Write a balanced chemical equation for the...Ch. 5 - (a) Write a balanced chemical equation for the...Ch. 5 - Use standard enthalpies of formation in Appendix L...Ch. 5 - Use standard enthalpies of formation in Appendix L...Ch. 5 - The first step in the production of nitric acid...Ch. 5 - The Romans used calcium oxide, CaO, to produce a...Ch. 5 - The standard enthalpy of formation of solid barium...Ch. 5 - An important step in the production of sulfuric...Ch. 5 - The enthalpy change for the oxidation of...Ch. 5 - The enthalpy change for the oxidation of styrene....Ch. 5 - Prob. 65GQCh. 5 - Prob. 66GQCh. 5 - For each of the following, define a system and its...Ch. 5 - Prob. 68GQCh. 5 - Use Appendix L to find the standard enthalpies of...Ch. 5 - You have a large balloon containing 1.0 mol of...Ch. 5 - Determine whether energy as heat is evolved or...Ch. 5 - Determine whether energy as heat is evolved or...Ch. 5 - Use standard enthalpies of formation to calculate...Ch. 5 - Which evolves more energy on cooling from 50 C to...Ch. 5 - You determine that 187 J of energy as heat is...Ch. 5 - Calculate the quantity of energy required to...Ch. 5 - You add 100.0 g of water at 60.0 C to 100.0 g of...Ch. 5 - Three 45-g ice cubes at 0 C are dropped into 5.00 ...Ch. 5 - Suppose that only two 45-g ice cubes had been...Ch. 5 - You take a diet cola from the refrigerator and...Ch. 5 - The standard molar enthalpy of formation of...Ch. 5 - Chloromethane, CH3Cl, a compound found throughout...Ch. 5 - Prob. 83GQCh. 5 - Camping stoves are fueled by propane (C3H8),...Ch. 5 - Prob. 85GQCh. 5 - Prob. 86GQCh. 5 - (a) Calculate the enthalpy change, rH, for the...Ch. 5 - You drink 350 mL of diet soda that is at a...Ch. 5 - Chloroform, CHCl3, is formed from methane and...Ch. 5 - Water gas, a mixture of carbon monoxide and...Ch. 5 - Using standard enthalpies of formation, verify...Ch. 5 - A piece of lead with a mass of 27.3 g was heated...Ch. 5 - A 192-g piece of copper is heated to 100.0 C in a...Ch. 5 - Insoluble AgCl(s) precipitates when solutions of...Ch. 5 - Insoluble PbBr2(s) precipitates when solutions of...Ch. 5 - The value of U for the decomposition of 7.647 g of...Ch. 5 - A bomb calorimetric experiment was run to...Ch. 5 - The meals-ready-to-eat (MREs) in the military can...Ch. 5 - On a cold day, you can warm your hands with a heat...Ch. 5 - Without doing calculations, decide whether each of...Ch. 5 - Prob. 102SCQCh. 5 - You want to determine the value for the enthalpy...Ch. 5 - Prepare a graph of specific heat capacities for...Ch. 5 - Prob. 105SCQCh. 5 - You are attending summer school and living in a...Ch. 5 - Prob. 107SCQCh. 5 - Prob. 108SCQCh. 5 - Prob. 109SCQCh. 5 - Peanuts and peanut oil are organic materials and...Ch. 5 - Isomers are molecules with the same elemental...Ch. 5 - Prob. 112SCQCh. 5 - Prob. 113SCQCh. 5 - A piece of gold (10.0 g, CAu = 0.129 J/g K) is...Ch. 5 - Methane, CH4, can be converted to methanol, which,...Ch. 5 - Calculate rH for the reaction 2 C(s) + 3 H2(g) + ...Ch. 5 - You have the six pieces of metal listed below,...Ch. 5 - Sublimation of 1.0 g of dry ice. CO2(s), forms...Ch. 5 - In the reaction of two moles of gaseous hydrogen...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Curved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. H H CH3OH, H+ H Select to Add Arrows H° 0:0 'H + Q HH ■ Select to Add Arrows CH3OH, H* H. H CH3OH, H+ HH ■ Select to Add Arrows i Please select a drawing or reagent from the question areaarrow_forwardWhat are examples of analytical methods that can be used to analyse salt in tomato sauce?arrow_forwardA common alkene starting material is shown below. Predict the major product for each reaction. Use a dash or wedge bond to indicate the relative stereochemistry of substituents on asymmetric centers, where applicable. Ignore any inorganic byproducts H Šali OH H OH Select to Edit Select to Draw 1. BH3-THF 1. Hg(OAc)2, H2O =U= 2. H2O2, NaOH 2. NaBH4, NaOH + Please select a drawing or reagent from the question areaarrow_forward
- What is the MOHR titration & AOAC method? What is it and how does it work? How can it be used to quantify salt in a sample?arrow_forwardPredict the major products of this reaction. Cl₂ hv ? Draw only the major product or products in the drawing area below. If there's more than one major product, you can draw them in any arrangement you like. Be sure you use wedge and dash bonds if necessary, for example to distinguish between major products with different stereochemistry. If there will be no products because there will be no significant reaction, just check the box under the drawing area and leave it blank. Note for advanced students: you can ignore any products of repeated addition. Explanation Check Click and drag to start drawing a structure. 80 10 m 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibility DII A F1 F2 F3 F4 F5 F6 F7 F8 EO F11arrow_forwardGiven a system with an anodic overpotential, the variation of η as a function of current density- at low fields is linear.- at higher fields, it follows Tafel's law.Calculate the range of current densities for which the overpotential has the same value when calculated for both cases (the maximum relative difference will be 5%, compared to the behavior for higher fields).arrow_forward
- Using reaction free energy to predict equilibrium composition Consider the following equilibrium: N2 (g) + 3H2 (g) = 2NH3 (g) AGº = -34. KJ Now suppose a reaction vessel is filled with 8.06 atm of nitrogen (N2) and 2.58 atm of ammonia (NH3) at 106. °C. Answer the following questions about this system: rise Under these conditions, will the pressure of N2 tend to rise or fall? ☐ x10 fall Is it possible to reverse this tendency by adding H₂? In other words, if you said the pressure of N2 will tend to rise, can that be changed to a tendency to fall by adding H2? Similarly, if you said the pressure of N will tend to fall, can that be changed to a tendency to rise by adding H₂? If you said the tendency can be reversed in the second question, calculate the minimum pressure of H₂ needed to reverse it. Round your answer to 2 significant digits. yes no ☐ atm Х ด ? olo 18 Ararrow_forwardFour liters of an aqueous solution containing 6.98 mg of acetic acid were prepared. At 25°C, the measured conductivity was 5.89x10-3 mS cm-1. Calculate the degree of dissociation of the acid and its ionization constant.Molecular weights: O (15.999), C (12.011), H (1.008).Limiting molar ionic conductivities (λ+0 and λ-0) of Ac-(aq) and H+(aq): 40.9 and 349.8 S cm-2 mol-1.arrow_forwardDetermine the change in Gibbs energy, entropy, and enthalpy at 25°C for the battery from which the data in the table were obtained.T (°C) 15 20 25 30 35Eo (mV) 227.13 224.38 221.87 219.37 216.59Data: n = 1, F = 96485 C mol–1arrow_forward
- Indicate the correct options.1. The units of the transport number are Siemens per mole.2. The Siemens and the ohm are not equivalent.3. The Van't Hoff factor is dimensionless.4. Molar conductivity does not depend on the electrolyte concentration.arrow_forwardIdeally nonpolarizable electrodes can1. participate as reducers in reactions.2. be formed only with hydrogen.3. participate as oxidizers in reactions.4. form open and closed electrochemical systems.arrow_forwardIndicate the options for an electrified interface:1. Temperature has no influence on it.2. Not all theories that describe it include a well-defined electrical double layer.3. Under favorable conditions, its differential capacitance can be determined with the help of experimental measurements.4. A component with high electronic conductivity is involved in its formation.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning

General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning

Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning

Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning

Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning

Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning

Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Calorimetry Concept, Examples and Thermochemistry | How to Pass Chemistry; Author: Melissa Maribel;https://www.youtube.com/watch?v=nSh29lUGj00;License: Standard YouTube License, CC-BY