Concept explainers
(a)
The time taken by the runaway ski to slide down a 250-m long slope when the coefficient of kinetic friction between the ski and the snow is 0.100.
Answer to Problem 81QAP
The time taken by the runaway ski to slide down a 250-m long slope when the coefficient of kinetic friction between the ski and the snow is 0.100 is 8.12 s.
Explanation of Solution
Given:
The length of the ski slope
The angle made by the slope to the horizontal
Initial speed of the ski
Coefficient of kinetic friction between the ski and snow
Formula used:
A free body diagram of the ski is drawn to analyze its motion.
Assume a coordinate system, with the +x directed downwards along the incline and +y directed upwards, perpendicular to the incline. The weight
Resolve the weight
The ski is in equilibrium along the y direction.
Therefore,
Therefore, using equation (1),
The force of kinetic friction and the normal force are related according to the following equation:
From equation (2)
Write the force equation along the +x direction.
Use the values of wx and fk from equations (2) and (3) in the expression,
Simplify and write an expression for ax.
Use the following equation of motion to obtain the value of the time t.
Calculation:
Substitute the values of the variables in equation (4) and calculate the value of the acceleration.
Use the calculated value of ax and the values of v0 and
Solve the quadratic equation.
Taking the positive root,
Conclusion:
The time taken by the runaway ski to slide down a 250-m long slope when the coefficient of kinetic friction between the ski and the snow is 0.100 is 8.12 s.
(b)
The time taken by the runaway ski to slide down a 250-m long slope when the coefficient of kinetic friction between the ski and the snow is 0.150.
Answer to Problem 81QAP
The time taken by the runaway ski to slide down a 250-m long slope when the coefficient of kinetic friction between the ski and the snow is 0.150 is 8.39 s.
Explanation of Solution
Given:
The length of the ski slope
The angle made by the slope to the horizontal
Initial speed of the ski
Coefficient of kinetic friction between the ski and snow
Formula used:
The acceleration of the ski down the slope is given by
The time taken to reach the bottom of the slope is calculated using the expression,
Calculation:
Substitute the values of the variables in equation for acceleration and calculate the value of the acceleration.
Use the calculated value of ax and the values of v0 and
Solve the quadratic equation.
Taking the positive root,
Conclusion:
The time taken by the runaway ski to slide down a 250-m long slope when the coefficient of kinetic friction between the ski and the snow is 0.150 is 8.39 s.
Want to see more full solutions like this?
Chapter 5 Solutions
COLLEGE PHYSICS LL W/ 6 MONTH ACCESS
- 2. Consider the situation described in problem 1 where light emerges horizontally from ground level. Take k = 0.0020 m' and no = 1.0001 and find at which horizontal distance, x, the ray reaches a height of y = 1.5 m.arrow_forward2-3. Consider the situation of the reflection of a pulse at the interface of two string described in the previous problem. In addition to the net disturbances being equal at the junction, the slope of the net disturbances must also be equal at the junction at all times. Given that p1 = 4.0 g/m, H2 = 9.0 g/m and Aj = 0.50 cm find 2. A, (Answer: -0.10 cm) and 3. Ay. (Answer: 0.40 cm)please I need to show all work step by step problems 2 and 3arrow_forwardFrom number 2 and 3 I just want to show all problems step by step please do not short cut look for formulaarrow_forward
- Look at the answer and please show all work step by steparrow_forward3. As a woman, who's eyes are h = 1.5 m above the ground, looks down the road sees a tree with height H = 9.0 m. Below the tree is what appears to be a reflection of the tree. The observation of this apparent reflection gives the illusion of water on the roadway. This effect is commonly called a mirage. Use the results of questions 1 and 2 and the principle of ray reversibility to analyze the diagram below. Assume that light leaving the top of the tree bends toward the horizontal until it just grazes ground level. After that, the ray bends upward eventually reaching the woman's eyes. The woman interprets this incoming light as if it came from an image of the tree. Determine the size, H', of the image. (Answer 8.8 m) please show all work step by steparrow_forwardNo chatgpt pls will upvotearrow_forward
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning