Concept explainers
(a)
If the crate resting on the bed of a decelerating truck would slide during the braking period.
Answer to Problem 77QAP
The crate will not slide, since the acceleration it experiences due to the truck's deceleration is less than the acceleration it experiences due to the force of static friction.
Explanation of Solution
Given:
The mass of the crate
Initial velocity of the truck
Final velocity of the truck
Time during which the truck comes to a stop
Coefficient of static friction between the truck and the crate
Formula used:
To find if the crate would slide or not, a free body diagram is drawn for the crate and the force equations for equilibrium and for motion of the crate are determined.
The free body diagram for the crate is shown below:
The weight of the block
The block is in equilibrium along the vertical ( y ) direction.
Therefore,
Since,
Therefore,
If
If the force of friction produces an acceleration,
Write an expression for the acceleration due to the force of friction using equations (1) and (2).
The expression for the acceleration produced by the truck is given by,
Calculation:
Calculate the acceleration
Express the initial velocity of the crate in m/s.
Calculate the acceleration a experienced by the crate due to the truck's decoration by substituting the values of the variables in equation (4).
This acceleration acts along the −x direction.
The crate slides if a >af.
Conclusion:
It can be seen that the acceleration in the +x direction is 6.419 m/s2 and that along the −x direction is 1.158 m/s2. Since
(b)
The minimum stopping time for the truck, that prevents the crate from sliding.
Answer to Problem 77QAP
For the crate to not slide on the bed of the truck, the minimum stopping time of the truck is 2.16 s.
Explanation of Solution
Given:
Acceleration produced by the
Initial velocity of the truck
Final velocity of the truck
Formula used:
The crate will just remain in equilibrium, if the acceleration acting on it along the −x direction due to the truck's deceleration is equal to the acceleration along the +x direction due to the force of friction.
Calculation:
Rewrite the expression for
Substitute the values of the variables in the equation and solve for
Conclusion:
Thus, for the crate to not slide on the bed of the truck, the minimum stopping time of the truck is 2.16 s.
Want to see more full solutions like this?
Chapter 5 Solutions
COLLEGE PHYSICS LL W/ 6 MONTH ACCESS
- Paraxial design of a field flattener. Imagine your optical system has Petzal curvature of the field with radius p. In Module 1 of Course 1, a homework problem asked you to derive the paraxial focus shift along the axis when a slab of glass was inserted in a converging cone of rays. Find or re-derive that result, then use it to calculate the paraxial radius of curvature of a field flattener of refractive index n that will correct the observed Petzval. Assume that the side of the flattener facing the image plane is plano. What is the required radius of the plano-convex field flattener? (p written as rho )arrow_forward3.37(a) Five free electrons exist in a three-dimensional infinite potential well with all three widths equal to \( a = 12 \, \text{Å} \). Determine the Fermi energy level at \( T = 0 \, \text{K} \). (b) Repeat part (a) for 13 electrons. Book: Semiconductor Physics and Devices 4th ed, NeamanChapter-3Please expert answer only. don't give gpt-generated answers, & please clear the concept of quantum states for determining nx, ny, nz to determine E, as I don't have much idea about that topic.arrow_forward3.37(a) Five free electrons exist in a three-dimensional infinite potential well with all three widths equal to \( a = 12 \, \text{Å} \). Determine the Fermi energy level at \( T = 0 \, \text{K} \). (b) Repeat part (a) for 13 electrons. Book: Semiconductor Physics and Devices 4th ed, NeamanChapter-3Please expert answer only. don't give gpt-generated answers, & please clear the concept of quantum states for determining nx, ny, nz to determine E, as I don't have much idea about that topic.arrow_forward
- No chatgpt pls will upvotearrow_forwardUse the following information to answer the next question. Two mirrors meet an angle, a, of 105°. A ray of light is incident upon mirror A at an angle, i, of 42°. The ray of light reflects off mirror B and then enters water, as shown below: Incident ray at A Note: This diagram is not to scale. a Air (n = 1.00) Water (n = 1.34) 1) Determine the angle of refraction of the ray of light in the water. Barrow_forwardHi can u please solvearrow_forward
- 6. Bending a lens in OpticStudio or OSLO. In either package, create a BK7 singlet lens of 10 mm semi-diameter and with 10 mm thickness. Set the wavelength to the (default) 0.55 microns and a single on-axis field point at infinite object distance. Set the image distance to 200 mm. Make the first surface the stop insure that the lens is fully filled (that is, that the entrance beam has a radius of 10 mm). Use the lens-maker's equation to calculate initial glass curvatures assuming you want a symmetric, bi-convex lens with an effective focal length of 200 mm. Get this working and examine the RMS spot size using the "Text" tab of the Spot Diagram analysis tab (OpticStudio) or the Spd command of the text widnow (OSLO). You should find the lens is far from diffraction limited, with a spot size of more than 100 microns. Now let's optimize this lens. In OpticStudio, create a default merit function optimizing on spot size.Then insert one extra line at the top of the merit function. Assign the…arrow_forwardNo chatgpt pls will upvote Already got wrong chatgpt answer .arrow_forwardUse the following information to answer the next question. Two mirrors meet an angle, a, of 105°. A ray of light is incident upon mirror A at an angle, i, of 42°. The ray of light reflects off mirror B and then enters water, as shown below: A Incident ray at A Note: This diagram is not to scale. Air (n = 1.00) Water (n = 1.34) Barrow_forward
- Use the following information to answer the next question. Two mirrors meet an angle, a, of 105°. A ray of light is incident upon mirror A at an angle, i, of 42°. The ray of light reflects off mirror B and then enters water, as shown below: A Incident ray at A Note: This diagram is not to scale. Air (n = 1.00) Water (n = 1.34) Barrow_forwardGood explanation it sure experts solve it.arrow_forwardNo chatgpt pls will upvote Asaparrow_forward
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning