FlipIt for College Physics (Algebra Version - Six Months Access)
FlipIt for College Physics (Algebra Version - Six Months Access)
17th Edition
ISBN: 9781319032432
Author: Todd Ruskell
Publisher: W.H. Freeman & Co
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 5, Problem 81QAP
To determine

(a)

The time taken by the runaway ski to slide down a 250-m long slope when the coefficient of kinetic friction between the ski and the snow is 0.100.

Expert Solution
Check Mark

Answer to Problem 81QAP

The time taken by the runaway ski to slide down a 250-m long slope when the coefficient of kinetic friction between the ski and the snow is 0.100 is 8.12 s.

Explanation of Solution

Given:

The length of the ski slope

  Δx=250 m

The angle made by the slope to the horizontal

  θ=37.0°

Initial speed of the ski

  v0=10.0 m/s

Coefficient of kinetic friction between the ski and snow

  μk=0.100

Formula used:

A free body diagram of the ski is drawn to analyze its motion.

  FlipIt for College Physics (Algebra Version - Six Months Access), Chapter 5, Problem 81QAP

Assume a coordinate system, with the +x directed downwards along the incline and +y directed upwards, perpendicular to the incline. The weight w acts vertically downwards, the normal force n acts perpendicular to the incline along the +y direction. The force of kinetic friction fk acts upwards along the incline along the −x direction.

Resolve the weight w along the +x and the −y directions. Use the expression w=mg, where g is the acceleration of free fall and write expressions for the components.

  wx=wsinθ=mgsinθwy=wcosθ=mgcosθ......(1)

The ski is in equilibrium along the y direction.

Therefore,

  Fy=nwy=0

Therefore, using equation (1),

  n=wy=mgcosθ......(2)

The force of kinetic friction and the normal force are related according to the following equation:

  fk=μkn

From equation (2)

  fk=μkn=μkmgcosθ......(3)

Write the force equation along the +x direction.

  Fx=wxfk=max

Use the values of wx and fk from equations (2) and (3) in the expression,

  wxfk=maxmgsinθμkmgcosθ=max

Simplify and write an expression for ax.

  ax=g(sinθμkcosθ)......(4)

Use the following equation of motion to obtain the value of the time t.

  Δx=v0t+12axt2......(5)

Calculation:

Substitute the values of the variables in equation (4) and calculate the value of the acceleration.

  ax=g(sinθμkcosθ)=(9.80 m/s2)[(sin37.0°)(0.100)(cos37.0°)]=5.12 m/s2

Use the calculated value of ax and the values of v0 and Δx in equation (5).

  (250 m)=(10.0 m/s)t+12(5.12 m/s2)t2

Solve the quadratic equation.

  (2.56 m/s2)t2+(10.0 m/s)t+(250 m)=0

  t=(10.0 m/s)± ( 10.0 m/s ) 24( 2.56  m/s 2 )( 250 m)2(2.56  m/s 2)=(10.0 m/s)±(51.58 m/s)(5.12  m/s 2)

Taking the positive root,

  t=8.12 s

Conclusion:

The time taken by the runaway ski to slide down a 250-m long slope when the coefficient of kinetic friction between the ski and the snow is 0.100 is 8.12 s.

To determine

(b)

The time taken by the runaway ski to slide down a 250-m long slope when the coefficient of kinetic friction between the ski and the snow is 0.150.

Expert Solution
Check Mark

Answer to Problem 81QAP

The time taken by the runaway ski to slide down a 250-m long slope when the coefficient of kinetic friction between the ski and the snow is 0.150 is 8.39 s.

Explanation of Solution

Given:

The length of the ski slope

  Δx=250 m

The angle made by the slope to the horizontal

  θ=37.0°

Initial speed of the ski

  v0=10.0 m/s

Coefficient of kinetic friction between the ski and snow

  μk=0.150

Formula used:

The acceleration of the ski down the slope is given by

  ax=g(sinθμkcosθ)

The time taken to reach the bottom of the slope is calculated using the expression,

  Δx=v0t+12axt2

Calculation:

Substitute the values of the variables in equation for acceleration and calculate the value of the acceleration.

  ax=g(sinθμkcosθ)=(9.80 m/s2)[(sin37.0°)(0.150)(cos37.0°)]=4.72 m/s2

Use the calculated value of ax and the values of v0 and Δx in equation of motion.

  (250 m)=(10.0 m/s)t+12(4.72 m/s2)t2

Solve the quadratic equation.

  (2.36 m/s2)t2+(10.0 m/s)t+(250 m)=0

  t=(10.0 m/s)± ( 10.0 m/s ) 24( 2.36  m/s 2 )( 250 m)2(2.36  m/s 2)=(10.0 m/s)±(49.6 m/s)(4.72  m/s 2)

Taking the positive root,

  t=8.39 s

Conclusion:

The time taken by the runaway ski to slide down a 250-m long slope when the coefficient of kinetic friction between the ski and the snow is 0.150 is 8.39 s.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
I want to learn this topic l dont know anything about it
Solve the linear system of equations attached using Gaussian elimination (not Gauss-Jordan) and back subsitution. Remember that: A matrix is in row echelon form if Any row that consists only of zeros is at the bottom of the matrix. The first non-zero entry in each other row is 1. This entry is called aleading 1. The leading 1 of each row, after the first row, lies to the right of the leading 1 of the previous row.
PRIMERA EVALUACIÓN SUMATIVA 10. Determina la medida de los ángulos in- teriores coloreados en cada poligono. ⚫ Octágono regular A 11. Calcula es número de lados qu poligono regular, si la medida quiera de sus ángulos internos • a=156° A= (-2x+80 2 156 180- 360 0 = 24-360 360=24° • a = 162° 1620-180-360 6=18-360 360=19 2=360= 18 12. Calcula las medida ternos del cuadrilá B X+5 x+10 A X+X+ Sx+6 5x=3 x=30 0 лаб • Cuadrilátero 120° 110° • α = 166° 40' 200=180-360 0 = 26-360 360=20 ひ=360 20 18 J 60° ⚫a=169° 42' 51.43" 169.4143180-340 0 = 10.29 54-360 360 10.2857 2=360 10.2857 @Sa

Chapter 5 Solutions

FlipIt for College Physics (Algebra Version - Six Months Access)

Ch. 5 - Prob. 11QAPCh. 5 - Prob. 12QAPCh. 5 - Prob. 13QAPCh. 5 - Prob. 14QAPCh. 5 - Prob. 15QAPCh. 5 - Prob. 16QAPCh. 5 - Prob. 17QAPCh. 5 - Prob. 18QAPCh. 5 - Prob. 19QAPCh. 5 - Prob. 20QAPCh. 5 - Prob. 21QAPCh. 5 - Prob. 22QAPCh. 5 - Prob. 23QAPCh. 5 - Prob. 24QAPCh. 5 - Prob. 25QAPCh. 5 - Prob. 26QAPCh. 5 - Prob. 27QAPCh. 5 - Prob. 28QAPCh. 5 - Prob. 29QAPCh. 5 - Prob. 30QAPCh. 5 - Prob. 31QAPCh. 5 - Prob. 32QAPCh. 5 - Prob. 33QAPCh. 5 - Prob. 34QAPCh. 5 - Prob. 35QAPCh. 5 - Prob. 36QAPCh. 5 - Prob. 37QAPCh. 5 - Prob. 38QAPCh. 5 - Prob. 39QAPCh. 5 - Prob. 40QAPCh. 5 - Prob. 41QAPCh. 5 - Prob. 42QAPCh. 5 - Prob. 43QAPCh. 5 - Prob. 44QAPCh. 5 - Prob. 45QAPCh. 5 - Prob. 46QAPCh. 5 - Prob. 47QAPCh. 5 - Prob. 48QAPCh. 5 - Prob. 49QAPCh. 5 - Prob. 50QAPCh. 5 - Prob. 51QAPCh. 5 - Prob. 52QAPCh. 5 - Prob. 53QAPCh. 5 - Prob. 54QAPCh. 5 - Prob. 55QAPCh. 5 - Prob. 56QAPCh. 5 - Prob. 57QAPCh. 5 - Prob. 58QAPCh. 5 - Prob. 59QAPCh. 5 - Prob. 60QAPCh. 5 - Prob. 61QAPCh. 5 - Prob. 62QAPCh. 5 - Prob. 63QAPCh. 5 - Prob. 64QAPCh. 5 - Prob. 65QAPCh. 5 - Prob. 66QAPCh. 5 - Prob. 67QAPCh. 5 - Prob. 68QAPCh. 5 - Prob. 69QAPCh. 5 - Prob. 70QAPCh. 5 - Prob. 71QAPCh. 5 - Prob. 72QAPCh. 5 - Prob. 73QAPCh. 5 - Prob. 74QAPCh. 5 - Prob. 75QAPCh. 5 - Prob. 76QAPCh. 5 - Prob. 77QAPCh. 5 - Prob. 78QAPCh. 5 - Prob. 79QAPCh. 5 - Prob. 80QAPCh. 5 - Prob. 81QAPCh. 5 - Prob. 82QAPCh. 5 - Prob. 83QAPCh. 5 - Prob. 84QAPCh. 5 - Prob. 85QAPCh. 5 - Prob. 86QAPCh. 5 - Prob. 87QAPCh. 5 - Prob. 88QAPCh. 5 - Prob. 89QAPCh. 5 - Prob. 90QAP
Knowledge Booster
Background pattern image
Algebra
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Text book image
College Algebra
Algebra
ISBN:9781938168383
Author:Jay Abramson
Publisher:OpenStax
Text book image
College Algebra
Algebra
ISBN:9781337282291
Author:Ron Larson
Publisher:Cengage Learning
Text book image
Functions and Change: A Modeling Approach to Coll...
Algebra
ISBN:9781337111348
Author:Bruce Crauder, Benny Evans, Alan Noell
Publisher:Cengage Learning
Text book image
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY