Write a
bool isLeapYear(int year);
This function should return true if year is a leap year and false if it is not. Here is pseudocode to determine a leap year:
leapYear = (year divisible by 400) or (year divisible by 4 and year not divisible by 100))
int getCenturyValue(int year);
This function should take the first two digits of the year (that is. the century), divide by 4. and save the remainder. Subtract the remainder from 3 and return this value multiplied by 2. For example, the year 2008 becomes: (20/4) = 5 with a remainder of 0. 3 - 0 = 3. Return 3*2 = 6.
int getYearValue(int year);
This function computes a value based on the years since the beginning of the century. First, extract the last two digits of the year. For example, 08 is extracted for 2008. Next, factor in leap years. Divide the value from the previous Step by 4 and discard the remainder. Add the two results together and return this value. For example, from 2008 we extract 08. Then (8/4) = 2 with a remainder of 0. Return 2 + 8=10.
int getMonthVa0lue(int month, int year);
This function should return a value based on the table below and will require invoking the isLeapYear function.
Month | Return Value |
January | 0 (6 if year is a leap year) |
February | 3 (2 if year is a leap year) |
March | 3 |
April | 6 |
May | 1 |
June | 4 |
July | 6 |
August | 2 |
September | 5 |
October | 0 |
November | 3 |
December | 5 |
Finally, to compute the day of the week, compute the sum of the date’s day plus the values returned by getMonthValue, getYearValue, and getCenturyValue. Divide the sum by 7 and compute the remainder. A remainder of 0 corresponds to Sunday, 1 corresponds to Monday, etc., up to 6, which corresponds to Saturday. For example, the date July 4, 2008 should be computed as (day of month) 1 (getMonthValue) 1 (getYearValue) 1 (getCenturyValue) = 4 + 6 + 10 + 6 = 26. 26/7 = 3 with a remainder of 5.
The fifth day of the week corresponds to Friday.
Your program should allow the user to enter any date and output the corresponding day of the week in English.
This program should include a void function named getInput that prompts the user for the date and returns the month, day, and year using pass-by-reference Parameters. You may choose to have the user enter the date’s month as either a number (1–12) or a month name.
Want to see the full answer?
Check out a sample textbook solutionChapter 5 Solutions
Problem Solving with C++ plus MyProgrammingLab with Pearson eText-- Access Card Package (9th Edition)
Additional Engineering Textbook Solutions
Starting Out with Programming Logic and Design (5th Edition) (What's New in Computer Science)
SURVEY OF OPERATING SYSTEMS
Concepts Of Programming Languages
Java: An Introduction to Problem Solving and Programming (8th Edition)
Introduction To Programming Using Visual Basic (11th Edition)
Starting Out with C++ from Control Structures to Objects (9th Edition)
- Refer to page 60 for solving the Knapsack problem using dynamic programming. Instructions: • Implement the dynamic programming approach for the 0/1 Knapsack problem. Clearly define the recurrence relation and show the construction of the DP table. Verify your solution by tracing the selected items for a given weight limit. Link: [https://drive.google.com/file/d/1wKSrun-GlxirS3IZ9qoHazb9tC440AZF/view?usp=sharing]arrow_forwardRefer to page 70 for problems related to process synchronization. Instructions: • • Solve a synchronization problem using semaphores or monitors (e.g., Producer-Consumer, Readers-Writers). Write pseudocode for the solution and explain the critical section management. • Ensure the solution avoids deadlock and starvation. Test with an example scenario. Link: [https://drive.google.com/file/d/1wKSrun-GlxirS31Z9qo Hazb9tC440AZF/view?usp=sharing]arrow_forward15 points Save ARS Consider the following scenario in which host 10.0.0.1 is communicating with an external SMTP mail server at IP address 128.119.40.186. NAT translation table WAN side addr LAN side addr (c), 5051 (d), 3031 S: (e),5051 SMTP B D (f.(g) 10.0.0.4 server 138.76.29.7 128.119.40.186 (a) is the source IP address at A, and its value. S: (a),3031 D: (b), 25 10.0.0.1 A 10.0.0.2. 1. 138.76.29.7 10.0.0.3arrow_forward
- 6.3A-3. Multiple Access protocols (3). Consider the figure below, which shows the arrival of 6 messages for transmission at different multiple access wireless nodes at times t=0.1, 1.4, 1.8, 3.2, 3.3, 4.1. Each transmission requires exactly one time unit. 1 t=0.0 2 3 45 t=1.0 t-2.0 t-3.0 6 t=4.0 t-5.0 For the CSMA protocol (without collision detection), indicate which packets are successfully transmitted. You should assume that it takes .2 time units for a signal to propagate from one node to each of the other nodes. You can assume that if a packet experiences a collision or senses the channel busy, then that node will not attempt a retransmission of that packet until sometime after t=5. Hint: consider propagation times carefully here. (Note: You can find more examples of problems similar to this here B.] ☐ U ப 5 - 3 1 4 6 2arrow_forwardJust wanted to know, if you had a scene graph, how do you get multiple components from a specific scene node within a scene graph? Like if I wanted to get a component from wheel from the scene graph, does that require traversing still? Like if a physics component requires a transform component and these two component are part of the same scene node. How does the physics component knows how to get the scene object's transform it is attached to, this being in a scene graph?arrow_forwardHow to develop a C program that receives the message sent by the provided program and displays the name and email included in the message on the screen?Here is the code of the program that sends the message for reference: typedef struct { long tipo; struct { char nome[50]; char email[40]; } dados;} MsgStruct; int main() { int msg_id, status; msg_id = msgget(1000, 0600 | IPC_CREAT); exit_on_error(msg_id, "Creation/Connection"); MsgStruct msg; msg.tipo = 5; strcpy(msg.dados.nome, "Pedro Silva"); strcpy(msg.dados.email, "pedro@sapo.pt"); status = msgsnd(msg_id, &msg, sizeof(msg.dados), 0); exit_on_error(status, "Send"); printf("Message sent!\n");}arrow_forward
- 9. Let L₁=L(ab*aa), L₂=L(a*bba*). Find a regular expression for (L₁ UL2)*L2. 10. Show that the language is not regular. L= {a":n≥1} 11. Show a derivation tree for the string aabbbb with the grammar S→ABλ, A→aB, B→Sb. Give a verbal description of the language generated by this grammar.arrow_forward14. Show that the language L= {wna (w) < Nь (w) < Nc (w)} is not context free.arrow_forward7. What language is accepted by the following generalized transition graph? a+b a+b* a a+b+c a+b 8. Construct a right-linear grammar for the language L ((aaab*ab)*).arrow_forward
- 5. Find an nfa with three states that accepts the language L = {a^ : n≥1} U {b³a* : m≥0, k≥0}. 6. Find a regular expression for L = {vwv: v, wЄ {a, b}*, |v|≤4}.arrow_forward15. The below figure (sequence of moves) shows several stages of the process for a simple initial configuration. 90 a a 90 b a 90 91 b b b b Represent the action of the Turing machine (a) move from one configuration to another, and also (b) represent in the form of arbitrary number of moves.arrow_forward12. Eliminate useless productions from Sa aA BC, AaBλ, B→ Aa, C CCD, D→ ddd Cd. Also, eliminate all unit-productions from the grammar. 13. Construct an npda that accepts the language L = {a"b":n≥0,n‡m}.arrow_forward
- Database System ConceptsComputer ScienceISBN:9780078022159Author:Abraham Silberschatz Professor, Henry F. Korth, S. SudarshanPublisher:McGraw-Hill EducationStarting Out with Python (4th Edition)Computer ScienceISBN:9780134444321Author:Tony GaddisPublisher:PEARSONDigital Fundamentals (11th Edition)Computer ScienceISBN:9780132737968Author:Thomas L. FloydPublisher:PEARSON
- C How to Program (8th Edition)Computer ScienceISBN:9780133976892Author:Paul J. Deitel, Harvey DeitelPublisher:PEARSONDatabase Systems: Design, Implementation, & Manag...Computer ScienceISBN:9781337627900Author:Carlos Coronel, Steven MorrisPublisher:Cengage LearningProgrammable Logic ControllersComputer ScienceISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education