
Physics
7th Edition
ISBN: 9780321625915
Author: Douglas C. Giancoli
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 5, Problem 79GP
The rings of Saturn are composed of chunks of ice that orbit the planet. The inner radius of the rings is 73,000 km, and the outer radius is 170,000 km. Find the period of an orbiting chunk of ice at the inner radius and the period of a chunk at the outer radius. Compare your numbers with Saturn's own rotation period of 10 hours and 39 minutes. The mass of Saturn is 5.7 x 1026 kg.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
A convex mirror (f.=-6.20cm) and a concave minor (f2=8.10 cm)
distance of 15.5cm
are facing each other and are separated by a
An object is placed between the mirrors and is 7.8cm from each
mirror. Consider the light from the object that reflects first from
the convex mirror and then from the concave mirror. What is the
distance of the image (dia) produced by the concave mirror?
cm.
An amusement park spherical mirror shows
park spherical mirror shows anyone who stands
2.80m in front of it an upright image
one
and a half times the
person's height. What is the focal length of the minor?
m.
An m = 69.0-kg person running at an initial speed of v = 4.50 m/s jumps onto an M = 138-kg cart initially at rest (figure below). The person slides on the cart's top surface and finally comes to rest relative to the cart. The coefficient of kinetic friction between the person and the cart is
0.440. Friction between the cart and ground can be ignored. (Let the positive direction be to the right.)
m
M
(a) Find the final velocity of the person and cart relative to the ground. (Indicate the direction with the sign of your answer.)
m/s
(b) Find the friction force acting on the person while he is sliding across the top surface of the cart. (Indicate the direction with the sign of your answer.)
N
(c) How long does the friction force act on the person?
S
(d) Find the change in momentum of the person. (Indicate the direction with the sign of your answer.)
N.S
Find the change in momentum of the cart. (Indicate the direction with the sign of your answer.)
N.S
(e) Determine the displacement of the…
Chapter 5 Solutions
Physics
Ch. 5 - You revolve a ball around you in a horizontal...Ch. 5 - A space station revolves around the Earth as a...Ch. 5 - How many '‘accelerators” do you have in your car?...Ch. 5 - A car rounds a curve at a steady 50 km/h. If it...Ch. 5 - Will the acceleration of a car be the same when a...Ch. 5 - Prob. 4QCh. 5 - Prob. 5QCh. 5 - Prob. 6QCh. 5 - Prob. 7QCh. 5 - Prob. 8Q
Ch. 5 - Prob. 9QCh. 5 - 10. A car maintains a constant speed v as it...Ch. 5 - Prob. 11QCh. 5 - Prob. 12QCh. 5 - Does an apple exert a gravitational force on the...Ch. 5 - Why is more fuel required for a spacecraft to...Ch. 5 - Would it require less speed to launch a satellite...Ch. 5 - Prob. 16QCh. 5 - The Sun is below us at midnight, nearly in line...Ch. 5 - 18. When will your apparent weight be the...Ch. 5 - Prob. 19QCh. 5 - Prob. 20QCh. 5 - Is the centripetal acceleration of Mars in its...Ch. 5 - The mass of the '‘planet" Pluto was not known...Ch. 5 - Prob. 23QCh. 5 - Prob. 1MCQCh. 5 - Prob. 2MCQCh. 5 - Prob. 3MCQCh. 5 - Prob. 4MCQCh. 5 - Prob. 5MCQCh. 5 - Prob. 6MCQCh. 5 - Prob. 7MCQCh. 5 - Prob. 8MCQCh. 5 - Prob. 9MCQCh. 5 - Prob. 10MCQCh. 5 - Prob. 11MCQCh. 5 - 'A penny is placed on a turntable which is...Ch. 5 - A child sitting 1.20 m from the center of a...Ch. 5 - A jet plane traveling 1890 km/h (525 m/s) pulls...Ch. 5 - Prob. 3PCh. 5 - What is the magnitude of the acceleration of a...Ch. 5 - 5. (II) A 0.55-kg ball, attached to the end of a...Ch. 5 - How fast (in rpm) must a centrifuge rotate if a...Ch. 5 - Prob. 7PCh. 5 - How large must the coefficient of static friction...Ch. 5 - Prob. 9PCh. 5 - Prob. 10PCh. 5 - How many revolutions per minute would a...Ch. 5 - Prob. 12PCh. 5 - Prob. 13PCh. 5 - Prob. 14PCh. 5 - Prob. 15PCh. 5 - Prob. 16PCh. 5 - Prob. 17PCh. 5 - Prob. 18PCh. 5 - Prob. 19PCh. 5 - Prob. 20PCh. 5 - Prob. 21PCh. 5 - Prob. 22PCh. 5 - Prob. 23PCh. 5 - Determine the tangential and centripetal...Ch. 5 - Prob. 25PCh. 5 - For each of the cases described below, sketch and...Ch. 5 - Prob. 27PCh. 5 - Calculate the force of Earth's gravity on a...Ch. 5 - At the surface of a certain planet, the...Ch. 5 - At what distance from the Earth will a spacecraft...Ch. 5 - Prob. 31PCh. 5 - Prob. 32PCh. 5 - Prob. 33PCh. 5 - Prob. 34PCh. 5 - Prob. 35PCh. 5 - Prob. 36PCh. 5 - Prob. 37PCh. 5 - Prob. 38PCh. 5 - Prob. 39PCh. 5 - Prob. 40PCh. 5 - 41. (II) Every few hundred years most of the...Ch. 5 - 42 (II) Four 7.5-kg spheres are located at the...Ch. 5 - 43. (II) Determine the distance from the Earth's...Ch. 5 - 44.(II) A certain neutron star has five times the...Ch. 5 - 45. (I) A space shuttle releases a satellite into...Ch. 5 - 46. (I) Calculate the speed of a satellite moving...Ch. 5 - Prob. 47PCh. 5 - Prob. 48PCh. 5 - Calculate the period of a satellite orbiting the...Ch. 5 - Prob. 50PCh. 5 - What will a spring scale read for the weight of a...Ch. 5 - Prob. 52PCh. 5 - Prob. 53PCh. 5 - A Ferris wheel 22.0 m in diameter rotates once...Ch. 5 - At what rate must a cylindrical spaceship rotate...Ch. 5 - (a) Show that if a satellite orbits very near the...Ch. 5 - Neptune is an average distance of 4.5 x 109 km...Ch. 5 - The asteroid Icarus, though only a few hundred...Ch. 5 - Prob. 59PCh. 5 - Determine the mass of the Earth from the known...Ch. 5 - Prob. 61PCh. 5 - Prob. 62PCh. 5 - Prob. 63PCh. 5 - Prob. 64PCh. 5 - Prob. 65PCh. 5 - Prob. 66PCh. 5 - Prob. 67GPCh. 5 - Prob. 68GPCh. 5 - Prob. 69GPCh. 5 - Prob. 70GPCh. 5 - Prob. 71GPCh. 5 - Prob. 72GPCh. 5 - Prob. 73GPCh. 5 - Prob. 74GPCh. 5 - Two equal-mass stars maintain a constant distance...Ch. 5 - How far above the Earth's surface will the...Ch. 5 - Prob. 77GPCh. 5 - Prob. 78GPCh. 5 - The rings of Saturn are composed of chunks of ice...Ch. 5 - Prob. 80GPCh. 5 - Prob. 81GPCh. 5 - Prob. 82GPCh. 5 - Prob. 83GPCh. 5 - Prob. 84GPCh. 5 - A satellite of mass 5500 kg orbits the Earth and...Ch. 5 - Prob. 86GPCh. 5 - Prob. 87GPCh. 5 - Prob. 88GPCh. 5 - Prob. 89GPCh. 5 - Prob. 90GP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Small ice cubes, each of mass 5.60 g, slide down a frictionless track in a steady stream, as shown in the figure below. Starting from rest, each cube moves down through a net vertical distance of h = 1.50 m and leaves the bottom end of the track at an angle of 40.0° above the horizontal. At the highest point of its subsequent trajectory, the cube strikes a vertical wall and rebounds with half the speed it had upon impact. If 10 cubes strike the wall per second, what average force is exerted upon the wall? N ---direction--- ▾ ---direction--- to the top to the bottom to the left to the right 1.50 m 40.0°arrow_forwardThe magnitude of the net force exerted in the x direction on a 3.00-kg particle varies in time as shown in the figure below. F(N) 4 3 A 2 t(s) 1 2 3 45 (a) Find the impulse of the force over the 5.00-s time interval. == N⚫s (b) Find the final velocity the particle attains if it is originally at rest. m/s (c) Find its final velocity if its original velocity is -3.50 î m/s. V₁ m/s (d) Find the average force exerted on the particle for the time interval between 0 and 5.00 s. = avg Narrow_forward••63 SSM www In the circuit of Fig. 27-65, 8 = 1.2 kV, C = 6.5 µF, R₁ S R₂ R3 800 C H R₁ = R₂ = R3 = 0.73 MQ. With C completely uncharged, switch S is suddenly closed (at t = 0). At t = 0, what are (a) current i̟ in resistor 1, (b) current 2 in resistor 2, and (c) current i3 in resistor 3? At t = ∞o (that is, after many time constants), what are (d) i₁, (e) i₂, and (f) iz? What is the potential difference V2 across resistor 2 at (g) t = 0 and (h) t = ∞o? (i) Sketch V2 versus t between these two extreme times. Figure 27-65 Problem 63.arrow_forward
- Thor flies by spinning his hammer really fast from a leather strap at the end of the handle, letting go, then grabbing it and having it pull him. If Thor wants to reach escape velocity (velocity needed to leave Earth’s atmosphere), he will need the linear velocity of the center of mass of the hammer to be 11,200 m/s. Thor's escape velocity is 33532.9 rad/s, the angular velocity is 8055.5 rad/s^2. While the hammer is spinning at its maximum speed what impossibly large tension does the leather strap, which the hammer is spinning by, exert when the hammer is at its lowest point? the hammer has a total mass of 20.0kg.arrow_forwardIf the room’s radius is 16.2 m, at what minimum linear speed does Quicksilver need to run to stay on the walls without sliding down? Assume the coefficient of friction between Quicksilver and the wall is 0.236.arrow_forwardIn the comics Thor flies by spinning his hammer really fast from a leather strap at the end of the handle, letting go, then grabbing it and having it pull him. If Thor wants to reach escape velocity (velocity needed to leave Earth’s atmosphere), he will need the linear velocity of the center of mass of the hammer to be 11,200 m/s. A) If the distance from the end of the strap to the center of the hammer is 0.334 m, what angular velocity does Thor need to spin his hammer at to reach escape velocity? b) If the hammer starts from rest what angular acceleration does Thor need to reach that angular velocity in 4.16 s? c) While the hammer is spinning at its maximum speed what impossibly large tension does the leather strap, which the hammer is spinning by, exert when the hammer is at its lowest point? The hammer has a total mass of 20.0kg.arrow_forward
- The car goes from driving straight to spinning at 10.6 rev/min in 0.257 s with a radius of 12.2 m. The angular accleration is 4.28 rad/s^2. During this flip Barbie stays firmly seated in the car’s seat. Barbie has a mass of 58.0 kg, what is her normal force at the top of the loop?arrow_forwardConsider a hoop of radius R and mass M rolling without slipping. Which form of kinetic energy is larger, translational or rotational?arrow_forwardA roller-coaster vehicle has a mass of 571 kg when fully loaded with passengers (see figure). A) If the vehicle has a speed of 22.5 m/s at point A, what is the force of the track on the vehicle at this point? B) What is the maximum speed the vehicle can have at point B, in order for gravity to hold it on the track?arrow_forward
- This one wheeled motorcycle’s wheel maximum angular velocity was about 430 rev/min. Given that it’s radius was 0.920 m, what was the largest linear velocity of the monowheel?The monowheel could not accelerate fast or the rider would start spinning inside (this is called "gerbiling"). The maximum angular acceleration was 10.9 rad/s2. How long, in seconds, would it take it to hit maximum speed from rest?arrow_forwardIf points a and b are connected by a wire with negligible resistance, find the magnitude of the current in the 12.0 V battery.arrow_forwardConsider the two pucks shown in the figure. As they move towards each other, the momentum of each puck is equal in magnitude and opposite in direction. Given that v kinetic energy of the system is converted to internal energy? 30.0° 130.0 = green 11.0 m/s, and m blue is 25.0% greater than m 'green' what are the final speeds of each puck (in m/s), if 1½-½ t thearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY