
Physics
7th Edition
ISBN: 9780321625915
Author: Douglas C. Giancoli
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5, Problem 1P
A child sitting 1.20 m from the center of a merry-go-round moves with a speed of 1.10 m/s. Calculate (a) the centripetal acceleration of the child and (b) the net horizontal force exerted on the child (mass = 22.5 kg)
Expert Solution & Answer

Learn your wayIncludes step-by-step video

schedule03:04
Students have asked these similar questions
••63 SSM www In the circuit of
Fig. 27-65, 8 = 1.2 kV, C = 6.5 µF,
R₁
S
R₂
R3
800
C
H
R₁ = R₂ = R3 = 0.73 MQ. With C
completely uncharged, switch S is
suddenly closed (at t = 0). At t = 0,
what are (a) current i̟ in resistor 1,
(b) current 2 in resistor 2, and
(c) current i3 in resistor 3? At t = ∞o
(that is, after many time constants), what are (d) i₁, (e) i₂, and (f) iz?
What is the potential difference V2 across resistor 2 at (g) t = 0 and
(h) t = ∞o? (i) Sketch V2 versus t between these two extreme times.
Figure 27-65 Problem 63.
Thor flies by spinning his hammer really fast from a leather strap at the end of the handle, letting go, then grabbing it and having it pull him. If Thor wants to reach escape velocity (velocity needed to leave Earth’s atmosphere), he will need the linear velocity of the center of mass of the hammer to be 11,200 m/s. Thor's escape velocity is 33532.9 rad/s, the angular velocity is 8055.5 rad/s^2. While the hammer is spinning at its maximum speed what impossibly large tension does the leather strap, which the hammer is spinning by, exert when the hammer is at its lowest point? the hammer has a total mass of 20.0kg.
If the room’s radius is 16.2 m, at what minimum linear speed does Quicksilver need to run to stay on the walls without sliding down? Assume the coefficient of friction between Quicksilver and the wall is 0.236.
Chapter 5 Solutions
Physics
Ch. 5 - You revolve a ball around you in a horizontal...Ch. 5 - A space station revolves around the Earth as a...Ch. 5 - How many '‘accelerators” do you have in your car?...Ch. 5 - A car rounds a curve at a steady 50 km/h. If it...Ch. 5 - Will the acceleration of a car be the same when a...Ch. 5 - Prob. 4QCh. 5 - Prob. 5QCh. 5 - Prob. 6QCh. 5 - Prob. 7QCh. 5 - Prob. 8Q
Ch. 5 - Prob. 9QCh. 5 - 10. A car maintains a constant speed v as it...Ch. 5 - Prob. 11QCh. 5 - Prob. 12QCh. 5 - Does an apple exert a gravitational force on the...Ch. 5 - Why is more fuel required for a spacecraft to...Ch. 5 - Would it require less speed to launch a satellite...Ch. 5 - Prob. 16QCh. 5 - The Sun is below us at midnight, nearly in line...Ch. 5 - 18. When will your apparent weight be the...Ch. 5 - Prob. 19QCh. 5 - Prob. 20QCh. 5 - Is the centripetal acceleration of Mars in its...Ch. 5 - The mass of the '‘planet" Pluto was not known...Ch. 5 - Prob. 23QCh. 5 - Prob. 1MCQCh. 5 - Prob. 2MCQCh. 5 - Prob. 3MCQCh. 5 - Prob. 4MCQCh. 5 - Prob. 5MCQCh. 5 - Prob. 6MCQCh. 5 - Prob. 7MCQCh. 5 - Prob. 8MCQCh. 5 - Prob. 9MCQCh. 5 - Prob. 10MCQCh. 5 - Prob. 11MCQCh. 5 - 'A penny is placed on a turntable which is...Ch. 5 - A child sitting 1.20 m from the center of a...Ch. 5 - A jet plane traveling 1890 km/h (525 m/s) pulls...Ch. 5 - Prob. 3PCh. 5 - What is the magnitude of the acceleration of a...Ch. 5 - 5. (II) A 0.55-kg ball, attached to the end of a...Ch. 5 - How fast (in rpm) must a centrifuge rotate if a...Ch. 5 - Prob. 7PCh. 5 - How large must the coefficient of static friction...Ch. 5 - Prob. 9PCh. 5 - Prob. 10PCh. 5 - How many revolutions per minute would a...Ch. 5 - Prob. 12PCh. 5 - Prob. 13PCh. 5 - Prob. 14PCh. 5 - Prob. 15PCh. 5 - Prob. 16PCh. 5 - Prob. 17PCh. 5 - Prob. 18PCh. 5 - Prob. 19PCh. 5 - Prob. 20PCh. 5 - Prob. 21PCh. 5 - Prob. 22PCh. 5 - Prob. 23PCh. 5 - Determine the tangential and centripetal...Ch. 5 - Prob. 25PCh. 5 - For each of the cases described below, sketch and...Ch. 5 - Prob. 27PCh. 5 - Calculate the force of Earth's gravity on a...Ch. 5 - At the surface of a certain planet, the...Ch. 5 - At what distance from the Earth will a spacecraft...Ch. 5 - Prob. 31PCh. 5 - Prob. 32PCh. 5 - Prob. 33PCh. 5 - Prob. 34PCh. 5 - Prob. 35PCh. 5 - Prob. 36PCh. 5 - Prob. 37PCh. 5 - Prob. 38PCh. 5 - Prob. 39PCh. 5 - Prob. 40PCh. 5 - 41. (II) Every few hundred years most of the...Ch. 5 - 42 (II) Four 7.5-kg spheres are located at the...Ch. 5 - 43. (II) Determine the distance from the Earth's...Ch. 5 - 44.(II) A certain neutron star has five times the...Ch. 5 - 45. (I) A space shuttle releases a satellite into...Ch. 5 - 46. (I) Calculate the speed of a satellite moving...Ch. 5 - Prob. 47PCh. 5 - Prob. 48PCh. 5 - Calculate the period of a satellite orbiting the...Ch. 5 - Prob. 50PCh. 5 - What will a spring scale read for the weight of a...Ch. 5 - Prob. 52PCh. 5 - Prob. 53PCh. 5 - A Ferris wheel 22.0 m in diameter rotates once...Ch. 5 - At what rate must a cylindrical spaceship rotate...Ch. 5 - (a) Show that if a satellite orbits very near the...Ch. 5 - Neptune is an average distance of 4.5 x 109 km...Ch. 5 - The asteroid Icarus, though only a few hundred...Ch. 5 - Prob. 59PCh. 5 - Determine the mass of the Earth from the known...Ch. 5 - Prob. 61PCh. 5 - Prob. 62PCh. 5 - Prob. 63PCh. 5 - Prob. 64PCh. 5 - Prob. 65PCh. 5 - Prob. 66PCh. 5 - Prob. 67GPCh. 5 - Prob. 68GPCh. 5 - Prob. 69GPCh. 5 - Prob. 70GPCh. 5 - Prob. 71GPCh. 5 - Prob. 72GPCh. 5 - Prob. 73GPCh. 5 - Prob. 74GPCh. 5 - Two equal-mass stars maintain a constant distance...Ch. 5 - How far above the Earth's surface will the...Ch. 5 - Prob. 77GPCh. 5 - Prob. 78GPCh. 5 - The rings of Saturn are composed of chunks of ice...Ch. 5 - Prob. 80GPCh. 5 - Prob. 81GPCh. 5 - Prob. 82GPCh. 5 - Prob. 83GPCh. 5 - Prob. 84GPCh. 5 - A satellite of mass 5500 kg orbits the Earth and...Ch. 5 - Prob. 86GPCh. 5 - Prob. 87GPCh. 5 - Prob. 88GPCh. 5 - Prob. 89GPCh. 5 - Prob. 90GP
Additional Science Textbook Solutions
Find more solutions based on key concepts
As genetic testing becomes widespread, medical records will contain the results of such testing. Who should hav...
Concepts of Genetics (12th Edition)
61. Consider the reaction between calcium oxide and carbon dioxide:
A chemist allows 14.4 g of and 13.8 g of ...
Introductory Chemistry (6th Edition)
49. An elite Tour de France cyclist can maintain an output power of 450 W during a sustained climb. At this out...
College Physics: A Strategic Approach (3rd Edition)
Johnny was vigorously exercising the only joints in the skull that are freely movable. What would you guess he ...
Anatomy & Physiology (6th Edition)
explain the function of fermentation and the conditions under which it occurs?
Biology: Life on Earth with Physiology (11th Edition)
What two components contribute to species diversity? Explain how two communities with the same number of specie...
Campbell Biology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In the comics Thor flies by spinning his hammer really fast from a leather strap at the end of the handle, letting go, then grabbing it and having it pull him. If Thor wants to reach escape velocity (velocity needed to leave Earth’s atmosphere), he will need the linear velocity of the center of mass of the hammer to be 11,200 m/s. A) If the distance from the end of the strap to the center of the hammer is 0.334 m, what angular velocity does Thor need to spin his hammer at to reach escape velocity? b) If the hammer starts from rest what angular acceleration does Thor need to reach that angular velocity in 4.16 s? c) While the hammer is spinning at its maximum speed what impossibly large tension does the leather strap, which the hammer is spinning by, exert when the hammer is at its lowest point? The hammer has a total mass of 20.0kg.arrow_forwardThe car goes from driving straight to spinning at 10.6 rev/min in 0.257 s with a radius of 12.2 m. The angular accleration is 4.28 rad/s^2. During this flip Barbie stays firmly seated in the car’s seat. Barbie has a mass of 58.0 kg, what is her normal force at the top of the loop?arrow_forwardConsider a hoop of radius R and mass M rolling without slipping. Which form of kinetic energy is larger, translational or rotational?arrow_forward
- A roller-coaster vehicle has a mass of 571 kg when fully loaded with passengers (see figure). A) If the vehicle has a speed of 22.5 m/s at point A, what is the force of the track on the vehicle at this point? B) What is the maximum speed the vehicle can have at point B, in order for gravity to hold it on the track?arrow_forwardThis one wheeled motorcycle’s wheel maximum angular velocity was about 430 rev/min. Given that it’s radius was 0.920 m, what was the largest linear velocity of the monowheel?The monowheel could not accelerate fast or the rider would start spinning inside (this is called "gerbiling"). The maximum angular acceleration was 10.9 rad/s2. How long, in seconds, would it take it to hit maximum speed from rest?arrow_forwardIf points a and b are connected by a wire with negligible resistance, find the magnitude of the current in the 12.0 V battery.arrow_forward
- Consider the two pucks shown in the figure. As they move towards each other, the momentum of each puck is equal in magnitude and opposite in direction. Given that v kinetic energy of the system is converted to internal energy? 30.0° 130.0 = green 11.0 m/s, and m blue is 25.0% greater than m 'green' what are the final speeds of each puck (in m/s), if 1½-½ t thearrow_forwardConsider the blocks on the curved ramp as seen in the figure. The blocks have masses m₁ = 2.00 kg and m₂ = 3.60 kg, and are initially at rest. The blocks are allowed to slide down the ramp and they then undergo a head-on, elastic collision on the flat portion. Determine the heights (in m) to which m₁ and m2 rise on the curved portion of the ramp after the collision. Assume the ramp is frictionless, and h 4.40 m. m2 = m₁ m hm1 hm2 m iarrow_forwardA 3.04-kg steel ball strikes a massive wall at 10.0 m/s at an angle of 0 = 60.0° with the plane of the wall. It bounces off the wall with the same speed and angle (see the figure below). If the ball is in contact with the wall for 0.234 s, what is the average force exerted by the wall on the ball? magnitude direction ---Select--- ✓ N xarrow_forward
- You are in the early stages of an internship at NASA. Your supervisor has asked you to analyze emergency procedures for extravehicular activity (EVA), when the astronauts leave the International Space Station (ISS) to do repairs to its exterior or perform other tasks. In particular, the scenario you are studying is a failure of the manned-maneuvering unit (MMU), which is a nitrogen-propelled backpack that attaches to the astronaut's primary life support system (PLSS). In this scenario, the astronaut is floating directly away from the ISS and cannot use the failed MMU to get back. Therefore, the emergency plan is to take off the MMU and throw it in a direction directly away from the ISS, an action that will hopefully cause the astronaut to reverse direction and float back to the station. You have the following mass data provided to you: astronaut: 78.1 kg, spacesuit: 36.8 kg, MMU: 115 kg, PLSS: 145 kg. Based on tests performed by astronauts floating "weightless" inside the ISS, the most…arrow_forwardThree carts of masses m₁ = 4.50 kg, m₂ = 10.50 kg, and m3 = 3.00 kg move on a frictionless, horizontal track with speeds of V1 v1 13 m 12 mq m3 (a) Find the final velocity of the train of three carts. magnitude direction m/s |---Select--- ☑ (b) Does your answer require that all the carts collide and stick together at the same moment? ○ Yes Ο Νο = 6.00 m/s to the right, v₂ = 3.00 m/s to the right, and V3 = 6.00 m/s to the left, as shown below. Velcro couplers make the carts stick together after colliding.arrow_forwardA girl launches a toy rocket from the ground. The engine experiences an average thrust of 5.26 N. The mass of the engine plus fuel before liftoff is 25.4 g, which includes fuel mass of 12.7 g. The engine fires for a total of 1.90 s. (Assume all the fuel is consumed.) (a) Calculate the average exhaust speed of the engine (in m/s). m/s (b) This engine is positioned in a rocket body of mass 70.0 g. What is the magnitude of the final velocity of the rocket (in m/s) if it were to be fired from rest in outer space with the same amount of fuel? Assume the fuel burns at a constant rate. m/sarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Gravitational Force (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=pxp1Z91S5uQ;License: Standard YouTube License, CC-BY