
Concept explainers
(a)
Interpretation:
The tank with greater number of moles needs to be determined.
Concept introduction:
According to the
When at two different conditions gases are placed, then to determine the changed variable combined gas law is used. Below is the formula of combined gas law:
Here
- P1 and P2 are the pressure of gases
- V1 and V2 and volume of gases
- n1 and n2 number of moles
- T1 and T2 are the temperature of gases
Gas density is known as the ratio of mass of the gas and the volume occupied by that gas. The formula is as below:
Here, MM is the molar mass of the gas, V is the volume of gas, P is pressure of gas, T is temperature and R is the universal gas constant.
The kinetic model of gases is accounted for ideal gas behavior. The formula of average translational energy of gas is as below:
Here,
Et = average translational energy of gas
T = temperature in Kelvin
R = Universal gas constant
NA =
Effusion is known as the leakage of gas molecules from high to low pressure region via a pinhole. For any two gas molecules the formula to determine the time needed for effusion is as below:
Here time1 and time2 is the time of effusion for gas1 and gas 2. MM1 and MM2 is the molar mass for gas1 and gas 2.

Answer to Problem 78QAP
Number of moles of CO2 and H2 are same.
Explanation of Solution
The gas 1 is taken as CO2 and gas 2 as H2 . For both the gases pressure, volume and temperatures are equal. These values are substituted in combined gas la to determine moles of CO2 and H2 as below:
Thus, the number of moles of CO2 and H2 are same.
(b)
Interpretation:
The gas with higher density needs to be determined.
Concept introduction:
According to the ideal
When at two different conditions gases are placed, then to determine the changed variable combined gas law is used. Below is the formula of combined gas law:
Here
- P1 and P2 are the pressure of gases
- V1 and V2 and volume of gases
- n1 and n2 number of moles
- T1 and T2 are the temperature of gases
Gas density is known as the ratio of mass of the gas and the volume occupied by that gas. The formula is as below:
Here, MM is the molar mass of the gas, V is the volume of gas, P is pressure of gas, T is temperature and R is the universal gas constant.
The kinetic model of gases is accounted for ideal gas behavior. The formula of average translational energy of gas is as below:
Here,
Et = average translational energy of gas
T = temperature in Kelvin
R = Universal gas constant
NA = Avogadro number
Effusion is known as the leakage of gas molecules from high to low pressure region via a pinhole. For any two gas molecules the formula to determine the time needed for effusion is as below:
Here time1 and time2 is the time of effusion for gas1 and gas 2. MM1 and MM2 is the molar mass for gas1 and gas 2.

Answer to Problem 78QAP
Density of CO2 is higher than H2.
Explanation of Solution
The molar mas of CO2 = 44 g/mol and H2 = 2g/mol
Thus, MM1 = 44 g/mol, and MM2 = 2 g/mol
The ratio of densities of CO2 and H2 is determined as below:
Therefore, the density of CO2 is higher compare to the density of H2.
(c)
Interpretation:
The gas with higher effusion time needs to be determined.
Concept introduction:
According to the ideal gas law volume i.e. V, pressure i.e. P, number of moles i.e. m, temperature i.e. t and universal gas constant i.e. R is interrelated as below:
When at two different conditions gases are placed, then to determine the changed variable combined gas law is used.
Below is the formula of combined gas law:
Here
- P1 and P2 are the pressure of gases
- V1 and V2 and volume of gases
- n1 and n2 number of moles
- T1 and T2 are the temperature of gases
Gas density is known as the ratio of mass of the gas and the volume occupied by that gas. The formula is as below:
Here, MM is the molar mass of the gas, V is the volume of gas, P is pressure of gas, T is temperature and R is the universal gas constant.
The kinetic model of gases is accounted for ideal gas behavior. The formula of average translational energy of gas is as below:
Here,
Et = average translational energy of gas
T = temperature in Kelvin
R = Universal gas constant
NA = Avogadro number
Effusion is known as the leakage of gas molecules from high to low pressure region via a pinhole. For any two gas molecules the formula to determine the time needed for effusion is as below:
Here time1 and time2 is the time of effusion for gas1 and gas 2. MM1 and MM2 is the molar mass for gas1 and gas 2.

Answer to Problem 78QAP
Time of effusion of CO2 will be higher than H2.
Explanation of Solution
The molar mas of CO2 = 44 g/mol and H2 = 2g/mol
The rate of effusion is dependent on the molar mass. The effusion rate for gas with high molar mass will be less. Thus, time of effusion of CO2 will be higher than that of H2.
(d)
Interpretation:
The gas with large average translational energy needs to be determined.
Concept introduction:
According to the ideal gas law volume i.e. V, pressure i.e. P, number of moles i.e. m, temperature i.e. t and universal gas constant i.e. R is interrelated as below:
When at two different conditions gases are placed, then to determine the changed variable combined gas law is used. Below is the formula of combined gas law:
Here
- P1 and P2 are the pressure of gases
- V1 and V2 and volume of gases
- n1 and n2 number of moles
- T1 and T2 are the temperature of gases
Gas density is known as the ratio of mass of the gas and the volume occupied by that gas. The formula is as below:
Here, MM is the molar mass of the gas, V is the volume of gas, P is pressure of gas, T is temperature and R is the universal gas constant.
The kinetic model of gases is accounted for ideal gas behavior. The formula of average translational energy of gas is as below:
Here,
Et = average translational energy of gas
T = temperature in Kelvin
R = Universal gas constant
NA = Avogadro number
Effusion is known as the leakage of gas molecules from high to low pressure region via a pinhole. For any two gas molecules the formula to determine the time needed for effusion is as below:
Here time1 and time2 is the time of effusion for gas1 and gas 2. MM1 and MM2 is the molar mass for gas1 and gas 2.

Answer to Problem 78QAP
For both the gases average translational energies are same.
Explanation of Solution
The only variable in the equation is temperature. The temperatures for both the gases, CO2 and H2 are same. Th ratio of average translation energy of CO2 and H2 is calculated as below:
Thus, for both the gases CO2 and H2 the average translational energies are same.
(e)
Interpretation:
The gas with more partial pressure on addition of 1 mole of helium in each of the tanks needs to be determined.
Concept introduction:
According to the ideal gas law volume i.e. V, pressure i.e. P, number of moles i.e. m, temperature i.e. t and universal gas constant i.e. R is interrelated as below:
When at two different conditions gases are placed, then to determine the changed variable combined gas law is used. Below is the formula of combined gas law:
Here
- P1 and P2 are the pressure of gases
- V1 and V2 and volume of gases
- n1 and n2 number of moles
- T1 and T2 are the temperature of gases
Gas density is known as the ratio of mass of the gas and the volume occupied by that gas. The formula is as below:
Here, MM is the molar mass of the gas, V is the volume of gas, P is pressure of gas, T is temperature and R is the universal gas constant.
The kinetic model of gases is accounted for ideal gas behavior. The formula of average translational energy of gas is as below:
Here,
Et = average translational energy of gas
T = temperature in Kelvin
R = Universal gas constant
NA = Avogadro number
Effusion is known as the leakage of gas molecules from high to low pressure region via a pinhole. For any two gas molecules the formula to determine the time needed for effusion is as below:
Here, time1 and time2 is the time of effusion for gas1 and gas 2. MM1 and MM2 is the molar mass for gas1 and gas 2.

Answer to Problem 78QAP
Partial pressure for CO2 and H2 is same.
Explanation of Solution
The partial pressure of the gas is the pressure exerted by gas alone. As per the ideal gas equation:
Here partial pressure of gas 1 is P1, n1 is the number of moles of gas 1, V is the volume, T is the temperature and R is the universal gas constant
The number of moles of CO2 and H2 are same. Thus, the number of moles in tank after adding equal amount of He moles to both the tanks containing CO2 and H2 will be same. Also, volume as well as temperature are same of both the gases.
The ratio of partial pressure of tank having CO2 (i.e. P1 ) and H2 (i.e. P2 ) is determined as below:
Thus, partial pressure for CO2 and H2 are same.
Want to see more full solutions like this?
Chapter 5 Solutions
EBK CHEMISTRY: PRINCIPLES AND REACTIONS
- For the reaction below, the concentrations at equilibrium are [SO₂] = 0.50 M, [0] = 0.45 M, and [SO3] = 1.7 M. What is the value of the equilibrium constant, K? 2SO2(g) + O2(g) 2SO3(g) Report your answer using two significant figures. Provide your answer below:arrow_forwardI need help with this question. Step by step solution, please!arrow_forwardZn(OH)2(s) Zn(OH)+ Ksp = 3 X 10-16 B₁ = 1 x 104 Zn(OH)2(aq) B₂ = 2 x 1010 Zn(OH)3 ẞ3-8 x 1013 Zn(OH) B4-3 x 1015arrow_forward
- Help me understand this by showing step by step solution.arrow_forwardscratch paper, and the integrated rate table provided in class. our scratch work for this test. Content attribution 3/40 FEEDBACK QUESTION 3 - 4 POINTS Complete the equation that relates the rate of consumption of H+ and the rate of formation of Br2 for the given reaction. 5Br (aq) + BrO3 (aq) + 6H (aq) →3Br2(aq) + 3H2O(l) • Your answers should be whole numbers or fractions without any decimal places. Provide your answer below: Search 尚 5 fn 40 * 00 99+ 2 9 144 a [arrow_forward(a) Write down the structure of EDTA molecule and show the complex structure with Pb2+ . (b) When do you need to perform back titration? (c) Ni2+ can be analyzed by a back titration using standard Zn2+ at pH 5.5 with xylenol orange indicator. A solution containing 25.00 mL of Ni2+ in dilute HCl is treated with 25.00 mL of 0.05283 M Na2EDTA. The solution is neutralized with NaOH, and the pH is adjusted to 5.5 with acetate buffer. The solution turns yellow when a few drops of indicator are added. Titration with 0.02299 M Zn2+ requires 17.61 mL to reach the red end point. What is the molarity of Ni2+ in the unknown?arrow_forward
- A compound has the molecular formula CH40, and shows a strong IR absorption at 2850-3150 cm. The following signals appear in the 'H NMR spectrum: 1.4 ppm (triplet, 6H), 4.0 ppm (quartet, 4H), 6.8 ppm (broad singlet, 4H). Which of the following structures is consistent with these data? Select the single best answer. OCH CH₂ x OCH2CH3 CH₂OCH3 OH CH₂OCH OH CH, OCH₁ CH₂OCH, CH₂OCH HO OH ° CH₂OCH3arrow_forwardpredict the major product while showing me the intermidiate products from each reagent/reagent grouparrow_forwardWhy is it desirable in the method of standard addition to add a small volume of concentrated standard rather than a large volume of dilute standard? An unknown sample of Cu2+ gave an absorbance of 0.262 in an atomic absorption analysis. Then 1.00 mL of solution containing 100.0 ppm (= µg/mL) Cu2+ was mixed with 95.0 mL of unknown, and the mixture was diluted to 100.0 mL in a volumetric flask. The absorbance of the new solution was 0.500. Calculate the concentration of copper ion in the sample.arrow_forward
- What is the relation between the standard deviation and the precision of a procedure? What is the relation between standard deviation and accuracy? The percentage of an additive in gasoline was measured six times with the following results: 0.13, 0.12, 0.16, 0.17, 0.20, 0.11%. Find the 90% and 99% confidence intervals for the percentage of the additive.arrow_forwardIf you measure a quantity four times and the standard deviation is 1.0% of the average, can you be 90% confident that the true value is within 1.2% of the measured average?arrow_forwardWrite down three most common errors in thermogravimetric analysis. Identify them as systematic or random errors and discuss how you can minimize the errors for better results.arrow_forward
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning





