Physics for Science and Engineering With Modern Physics, VI - Student Study Guide
4th Edition
ISBN: 9780132273244
Author: Doug Giancoli
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5, Problem 71P
(III) Determine a formula for the position and acceleration of a falling object as a function of time if the object starts from rest at t = 0 and undergoes a resistive force F = −bv, as in Example 5–17.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(1) A skier of mass m slides up a hill for a distance d along surface coved with snow
till it shops. The motion on the hill is resisted by a force f = pv². Where 0 is the
angle of inclination of the hill. The equation of motion is written as
(II) A child on a sled reaches the bottom of a hill with a velocity of 10.0 m/s and travels 25.0 m along a horizontal straightaway to a stop. If the child and sled together have a mass of 60.0 kg, what is the average retarding force onthe sled on the horizontal straightaway?
(III) A person jumps from the roof of a house 2.8 m high.When he strikes the ground below, he bends his knees sothat his torso decelerates over an approximate distance of0.70 m. If the mass of his torso (excluding legs) is 42 kg,find (a) his velocity just before his feet strike the ground,and (b) the average force exerted on his torso by his legsduring deceleration.
Chapter 5 Solutions
Physics for Science and Engineering With Modern Physics, VI - Student Study Guide
Ch. 5.1 - If s = 0.40 and mg = 20 N, what minimum force F...Ch. 5.1 - Prob. 1BECh. 5.2 - Prob. 1CECh. 5.2 - If the radius is doubled to 1.20m but the period...Ch. 5.3 - A rider on a Ferris wheel moves in a vertical...Ch. 5.4 - The banking angle of a curve for a design speed v...Ch. 5.4 - Can a heavy truck and a small car travel safely at...Ch. 5.4 - When the speed of the race car in Example 516 is...Ch. 5 - A heavy crate rests on the bed of a flatbed truck....Ch. 5 - A block is given a push so that it slides up a...
Ch. 5 - Why is the stopping distance of a truck much...Ch. 5 - Can a coefficient of friction exceed 1.0?Ch. 5 - Cross-country skiers prefer their skis to have a...Ch. 5 - When you must brake your car very quickly, why is...Ch. 5 - When attempting to stop a car quickly on dry...Ch. 5 - You are trying to push your stalled car. Although...Ch. 5 - It is not easy to walk on an icy sidewalk without...Ch. 5 - A car rounds a curve at a steady 50 km/h. If it...Ch. 5 - Will the acceleration of a car be the same when a...Ch. 5 - Describe all the forces acting on a child riding a...Ch. 5 - A child on a sled comes flying over the crest of a...Ch. 5 - Sometimes it is said that water is removed from...Ch. 5 - Technical reports often specify only the rpm for...Ch. 5 - A girl is whirling a ball on a string around her...Ch. 5 - The game of tetherball is played with a ball tied...Ch. 5 - Astronauts who spend long periods in outer space...Ch. 5 - A bucket of water can be whirled in a vertical...Ch. 5 - A car maintains a constant speed v as it traverses...Ch. 5 - Why do bicycle riders lean in when rounding a...Ch. 5 - Why do airplanes bank when they turn? How would...Ch. 5 - For a drag force of the form F = bv, what are the...Ch. 5 - Suppose two forces act on an object, one force...Ch. 5 - (I) If the coefficient of kinetic friction between...Ch. 5 - (I) A force of 35.0 N is required to start a...Ch. 5 - (I) Suppose you are standing on a train...Ch. 5 - (I) The coefficient of static friction between...Ch. 5 - (I) What is the maximum acceleration a car can...Ch. 5 - (II) (a) A box sits at rest on a rough 33 inclined...Ch. 5 - (II) A 25.0-kg box is released on a 27 incline and...Ch. 5 - (II) A car can decelerate at 3.80 m/s2 without...Ch. 5 - (II) A skier moves down a 27 slope at constant...Ch. 5 - (II) A wet bar of soap slides freely down a ramp...Ch. 5 - (II) A box is given a push so that it slides...Ch. 5 - (II) (a) Show that the minimum stopping distance...Ch. 5 - (II) A 1280-kg car pulls a 350-kg trailer. The car...Ch. 5 - (II) Police investigators, examining the scene of...Ch. 5 - (II) Piles of snow on slippery roofs can become...Ch. 5 - (II) A small box is held in place against a rough...Ch. 5 - (II) Two crates, of mass 65 kg and 125 kg, are in...Ch. 5 - (II) The crate shown in Fig. 5-33 lies on a plane...Ch. 5 - (II) A crate is given an initial speed of 3.0 m/s...Ch. 5 - (II) Two blocks made of different materials...Ch. 5 - (II) For two blocks, connected by a cord and...Ch. 5 - (II) A flatbed truck is carrying a heavy crate....Ch. 5 - (II) In Fig 535 the coefficient of static friction...Ch. 5 - (II) Determine a formula for the acceleration of...Ch. 5 - (II) A small block of mass m is given an initial...Ch. 5 - (II) A 75-kg snowboarder has an initial velocity...Ch. 5 - (II) A package of mass m is dropped vertically...Ch. 5 - (II) Two masses mA = 2.0 kg and mB = 5.0 kg are on...Ch. 5 - (II) A child slides down a slide with a 34...Ch. 5 - (II) (a) Suppose the coefficient of kinetic...Ch. 5 - (III) A 3.0-kg block sits on top of a 5.0-kg block...Ch. 5 - (III) A 4.0-kg block is stacked on top of a...Ch. 5 - (III) A small block of mass m rests on the rough...Ch. 5 - (I) What is the maximum speed with which a 1200-kg...Ch. 5 - (I) A child sitting 1.20 m from the center of a...Ch. 5 - (I) A jet plane traveling 1890 km/h (525 m/s)...Ch. 5 - (II) Is it possible to whirl a bucket of water...Ch. 5 - (II) How fast (in rpm) must a centrifuge rotate if...Ch. 5 - (II) Highway curves are marked with a suggested...Ch. 5 - (II) At what minimum speed must a roller coaster...Ch. 5 - (II) A sports car crosses the bottom of a valley...Ch. 5 - (II) How large must the coefficient of static...Ch. 5 - (II) Suppose the space shuttle is in orbit 400 km...Ch. 5 - (II) A bucket of mass 2.00 kg is whirled in a...Ch. 5 - (II) How many revolutions per minute would a...Ch. 5 - (II) Use dimensional analysis (Section 1-7) to...Ch. 5 - (II) A jet pilot takes his aircraft in a vertical...Ch. 5 - (II) A proposed space station consists of a...Ch. 5 - (II) On an ice rink two skaters of equal mass grab...Ch. 5 - (II) Redo Example 511, precisely this time, by not...Ch. 5 - (II) A coin is placed 12.0cm from the axis of a...Ch. 5 - (II) The design of a new road includes a straight...Ch. 5 - (II) A 975-kg sports car (including driver)...Ch. 5 - (II) Two blocks with masses mA and mB, are...Ch. 5 - (II) Tarzan plans to cross a gorge by swinging in...Ch. 5 - (II) A pilot performs an evasive maneuver by...Ch. 5 - (III) The position of a particle moving in the xy...Ch. 5 - (III) If a curve with a radius of 85 m is properly...Ch. 5 - Since the curve is designed for a speed of 85...Ch. 5 - Prob. 60PCh. 5 - (II) In Problem 60 assume the tangential...Ch. 5 - (II) An object moves in a circle of radius 22 m...Ch. 5 - (III) A particle rotates in a circle of radius...Ch. 5 - (III) An object of mass m is constrained to move...Ch. 5 - (I) Use dimensional analysis (Section 17) in...Ch. 5 - (II) The terminal velocity of a 3 105 kg raindrop...Ch. 5 - (II) An object moving vertically has v=v0at t = 0....Ch. 5 - (III) The drag force on large objects such as...Ch. 5 - (III) A bicyclist can cost down a 7.0 hill at a...Ch. 5 - (III) Two drag forces act on a bicycle and rider:...Ch. 5 - (III) Determine a formula for the position and...Ch. 5 - (III) A block of mass m slides along a horizontal...Ch. 5 - (III) Show that the maximum distance the block in...Ch. 5 - (III) You dive straight down into a pool of water....Ch. 5 - (III) A motorboat traveling at a speed of 2.4 m/s...Ch. 5 - A coffee cup on the horizontal dashboard of a car...Ch. 5 - A 2.0-kg silverware drawer does not slide readily....Ch. 5 - A roller coaster reaches the top of the steepest...Ch. 5 - An 18.0-kg box is released on a 37.0 inclinc and...Ch. 5 - A flat puck (mass M) is revolved in a circle on a...Ch. 5 - A motorcyclist is coasting with the engine off at...Ch. 5 - In a Rotor-ride at a carnival, people rotate in a...Ch. 5 - A device for training astronauts and jet fighter...Ch. 5 - A 1250-kg car rounds a curve of radius 72 m banked...Ch. 5 - Determine the tangential and centripetal...Ch. 5 - The 70.0-kg climber in Fig. 550 is supported in...Ch. 5 - A small mass m is set on the surface of a sphere,...Ch. 5 - A 28.0-kg block is connected to an empty 2.00-kg...Ch. 5 - A car is heading down a slippery road at a speed...Ch. 5 - What is the acceleration experienced by the tip of...Ch. 5 - An airplane traveling at 480 km/h needs to reverse...Ch. 5 - A banked curve of radius R in a new highway...Ch. 5 - A small head of mass m is constrained to slide...Ch. 5 - Earth is not quite an inertial frame. We often...Ch. 5 - While fishing, you get bored and start to swing a...Ch. 5 - Consider a train that rounds a curve with a radius...Ch. 5 - A car starts rolling down a 1-in-4 hill (1-in-4...Ch. 5 - The sides of a cone make an angle with the...Ch. 5 - A 72kg water skier is being accelerated by a ski...Ch. 5 - A ball of mass m = 1.0 kg at the end of a thin...Ch. 5 - A car drives at a constant speed around a banked...Ch. 5 - (III) The force of air resistance (drag force) on...Ch. 5 - (III) The coefficient of kinetic friction k...Ch. 5 - (III) Assume a net force F = mg kv2 acts during...
Additional Science Textbook Solutions
Find more solutions based on key concepts
With respect to angiosperms, which of the following is incorrectly paired with its chromosome count? (A) eggn (...
Campbell Biology (11th Edition)
49. A gray kangaroo can bound across level ground with each jump carrying it 10 m from the takeoff point. Typic...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
When you rub your cold hands together, the friction between them results in heat that warms your hands. Why doe...
Anatomy & Physiology (6th Edition)
Approximately how many feet is the Missouri River above sea level? Height above sea level: _________ feet
Applications and Investigations in Earth Science (9th Edition)
How can the freezing of water crack boulders?
Campbell Biology in Focus (2nd Edition)
Which observation is consistent with a chemical reaction occurring? Why? a Solid copper deposits on a piece of ...
Introductory Chemistry (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (II) A 1280-kg car pulls a 350-kg trailer. The car exerts a horizontal force of 3.6x103 N against the ground in order to accelerate. What force does the car exert on the trailer?Assume an effective friction coefficient of 0.15 for the trailerarrow_forward(II) A train locomotive is pulling two cars of the same mass behind it, Fig., 4–51. Determine the ratio of the tension in the coupling (think of it as a cord) between the locomotive and the first car (Fr1), to that between the first car and the second car (Fr2), for any nonzero acceleration of the train. Car 2 Car 1 FIGURE 4–51 Problem 27.arrow_forward(II) At the instant a race began, a 65-kg sprinter exerted a force of 720 N on the starting block at a 22° angle with respect to the ground. (a) What was the horizontal acceleration of the sprinter? (b) If the force was exerted for 0.32 s,with what speed did the sprinter leave the starting block?arrow_forward
- (II) A particular race car can cover a quarter-mile track (402m) in 6.40s starting from a standstill. Assuming the acceleration is constant, how many "g's" does the driver experience? If the combined mass of the driver and race car is 535 kg, what horizontal force must the road exert on the tires?arrow_forward(II) A car can decelerate at -3.80 m/s2 without skidding when coming to rest on a level road. What would its deceleration be if the road is inclined at 9.3° and the car moves uphill? Assume the same static friction coefficient.arrow_forwardA child on a sled comes flying over the crest of a small hill, as shown in Fig. 5–32. His sled does not leave the ground, but he feels the normal force between his chest and the sled decrease as he goes over the hill. Explain this decrease using Newton's second law. FIGURE 5–32 Question 5.arrow_forward
- 57. (II) The block shown in Fig. 4–59 has mass m = 7.0 kg and lies on a fixed smooth frictionless plane tilted at an angle 0 = 22.0° to the hori- zontal. (a) Determine the acceleration of the block as it slides down the plane. (b) If the block starts from rest 12.0 m up the plane from its base, what will be the block's speed when y it reaches the bottom of the incline? FIGURE 4–59 Block on inclined plane. Problems 57 and 58.arrow_forward27 Go Body A in Fig. 6-33 weighs 102 N, and body B weighs 32 N. The coefficients of friction between A and the incline are 0.56 and P = 0.25. Angle 0 is 40°. Let the positive direction of an x axis be up, the incline. In unit-vector notation. what is the acceleration of A if A is initially (a) at rest. (b) moving up the incline, and (c) moving down the incline? 0 Frictionless, massle pulley Figure 6-33 Problems 27 and 28.arrow_forward(c) The Thrust SSC car raised the world land speed record in 1997. The mass of the car was 1.0 x 10 kg. A 12 s run by the car may be considered in two stages of constant acceleration. Stage one was from O to 4.0 s and stage two 4.0 s to 12 s. (i) In stage one the car accelerates from rest to 44 m s in 4.0 s. Calculate the acceleration produced and the force required to accelerate the car. (ii) In stage two the car continued to accelerate so that it reached 280 m s- in a further 8.0 s. Calculate the acceleration of the car during stage two. (iii) Calculate the distance travelled by the car from rest to reach a speed of 280 ms.arrow_forward
- 5) A chain hangs over a smooth peg, 8 meters being on one side and 12 meters on the other. Find the time required for it to slide off (a) neglecting friction and (b) if friction is eqúal to the weight of 1 meter of chain.arrow_forwardA cyclist is going up a hill with a slope of 3% at a uniform speed of 36 km/h. While riding, there is air resistance which is expressed by FR kv² with k = 0.2 kg.m-¹ and v is the speed of the cyclist. The combined mass of the cyclist and the bicycle is 75 kg. (i) (ii) What forward force exerted on the cyclist and bicycle by the road is required to make them move at a constant speed? Calculate the work done by the cyclist when riding a distance of 5 km. What is the power of the cyclist during this ride? Assume there is no loss of mechanical energy.arrow_forwardThe normal force on an extreme skier descending a very steep slope (Fig. 4–42) can be zero if(a) his speed is great enough.(b) he leaves the slope (no longer touches the snow).(c) the slope is greater than 75°.(d) the slope is vertical (90°).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY