Electrical Transformers and Rotating Machines
Electrical Transformers and Rotating Machines
4th Edition
ISBN: 9781305494817
Author: Stephen L. Herman
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 5, Problem 6RQ
To determine

The voltages between the points AB, AC, AD, AE, BC, BD, BE, CD, CE and DE.

Expert Solution & Answer
Check Mark

Explanation of Solution

Given:

The number of turns between the windings AB (NAB) is 120.

The number of turns between the windings BC (NBC) is 180.

The number of turns between the windings CD (NCD) is 250.

The number of turns between the windings DE (NDE) is 300.

The voltage connected across windings BE (EBE) is 240volts.

The below figure represents the autotransformer windings.

Electrical Transformers and Rotating Machines, Chapter 5, Problem 6RQ

Calculation:

Calculate the voltage per unit turns (voltsperturn) using the relation.

  voltsperturn=EBENBE

  voltsperturn=240volts(180+250+300)voltsperturn=2473

Calculate the voltage between the windings AB (EAB) using the relation.

  EAB=(voltsperturn)×NAB

  EAB=2473×120EAB=39.452volts

Calculate the voltage between the windings AC, (EAC) using the relation.

  EAC=(voltsperturn)×NAC

  EAC=2473×(120+180)EAC=98.63volts

Calculate the voltage between the windings AD (EAD) using the relation.

  EAD=(voltsperturn)×NA-D

  EAD=2473×(120+180+250)EAD=180.82volts

Calculate the voltage between the windings AE (EAE) using the relation.

  EAE=(voltsperturn)×NAE

  EAE=2473×(120+180+250+300)EAE=279.452volts

Calculate the voltage between the windings BC (EBC) using the relation.

  EBC=(voltsperturn)×NBC

  EBC=2473×(180)EBC=59.178volts

Calculate the voltage between the windings BD (EBD) using the relation.

  EBD=(voltsperturn)×NBD

  EBD=2473×(180+250)EBD=141.37volts

Calculate the voltage between the windings BE (EBE) using the relation.

  EBE=(voltsperturn)×NBE

  EBE=2473×(180+250+300)EBE=240volts

Calculate the voltage between the windings CD (ECD) using the relation.

  ECD=(voltsperturn)×NCD

  ECD=2473×(250)ECD=82.19volts

Calculate the voltage between the windings CE (ECE) using the relation.

  ECE=(voltsperturn)×NCE

  ECE=2473×(250+300)ECE=180.82volts

Calculate the voltage between the windings DE (EDE) using the relation.

  EDE=(voltsperturn)×NDE

  EDE=2473×(300)EDE=98.63volts

Thus, the voltages between the windings AB is 39.452volts_, between windings AC is 98.63volts_, between windings AD is 180.82volts_, between windings AE is 279.452volts_, between windings BC is 59.178volts_, between windings BD is 141.37volts_, between windings BE is 240volts_, between windings CD is 82.19volts_, between windings CE is 180.82volts_ and between windings DE is 98.63volts_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
2. Express the following complex numbers in rectangular form. (a) z₁ = 2еjл/6 (b) Z2=-3e-jπ/4 (c) Z3 = √√√3e-j³/4 (d) z4 = − j³
A prismatic beam is built into a structure. You can consider the boundary conditions at A and B to be fixed supports. The beam was originally designed to withstand a triangular distributed load, however, the loading condition has been revised and can be approximated by a cosine function as shown in the figure below. You have been tasked with analysing the structure. As the beam is prismatic, you can assume that the bending rigidity (El) is constant. wwo cos 2L x A B Figure 3: Built in beam with a varying distributed load In order to do this, you will: a. Solve the reaction forces and moments at point A and B. Hint: you may find it convenient to use the principal of superposition. (2%) b. Plot the shear force and bending moment diagrams and identify the maximum shear force and bending moment. (2%) c. Develop an expression for the vertical deflection. Clearly state your expression in terms of x. (1%)
Question 1: Beam Analysis Two beams (ABC and CD) are connected using a pin immediately to the left of Point C. The pin acts as a moment release, i.e. no moments are transferred through this pinned connection. Shear forces can be transferred through the pinned connection. Beam ABC has a pinned support at point A and a roller support at Point C. Beam CD has a roller support at Point D. A concentrated load, P, is applied to the mid span of beam CD, and acts at an angle as shown below. Two concentrated moments, MB and Mc act in the directions shown at Point B and Point C respectively. The magnitude of these moments is PL. Moment Release A B с ° MB = PL Mc= = PL -L/2- -L/2- → P D Figure 1: Two beam arrangement for question 1. To analyse this structure, you will: a) Construct the free body diagrams for the structure shown above. When constructing your FBD's you must make section cuts at point B and C. You can represent the structure as three separate beams. Following this, construct the…
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Electrical Transformers and Rotating Machines
Mechanical Engineering
ISBN:9781305494817
Author:Stephen L. Herman
Publisher:Cengage Learning
Text book image
Understanding Motor Controls
Mechanical Engineering
ISBN:9781337798686
Author:Stephen L. Herman
Publisher:Delmar Cengage Learning
Text book image
Refrigeration and Air Conditioning Technology (Mi...
Mechanical Engineering
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:Cengage Learning