Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5, Problem 69P
(III) A bicyclist can cost down a 7.0° hill at a steady 9.5 km/h. If the drag force is proportional to the square of the speed υ, so that FD = –cυ2, calculate (a) the value of the constant c and (b) the average force that must be applied in order to descend the hill at 25 km/h. The mass of the cyclist plus bicycle is 80.0 kg. Ignore other types of friction.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(3) 3rd signi. pls
A bicyclist can coast down a 8.18 degree hill at a constant speed of 5.55 km/h. If the force of air resistance is proportional to the speed v so that Fair = c v, calculate the average force (in N) that must be applied in order to descend the hill at 19.3 km/h. The mass of the cyclist plus bicycle is 78.6 kg.
Part (b) Write an expression for the magnitude of the change in the car's height, h, along the y-direction, assuming it travels a distance L down the
incline.
Chapter 5 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 5.1 - If s = 0.40 and mg = 20 N, what minimum force F...Ch. 5.1 - Prob. 1BECh. 5.2 - Prob. 1CECh. 5.2 - If the radius is doubled to 1.20m but the period...Ch. 5.3 - A rider on a Ferris wheel moves in a vertical...Ch. 5.4 - The banking angle of a curve for a design speed v...Ch. 5.4 - Can a heavy truck and a small car travel safely at...Ch. 5.4 - When the speed of the race car in Example 516 is...Ch. 5 - A heavy crate rests on the bed of a flatbed truck....Ch. 5 - A block is given a push so that it slides up a...
Ch. 5 - Why is the stopping distance of a truck much...Ch. 5 - Can a coefficient of friction exceed 1.0?Ch. 5 - Cross-country skiers prefer their skis to have a...Ch. 5 - When you must brake your car very quickly, why is...Ch. 5 - When attempting to stop a car quickly on dry...Ch. 5 - You are trying to push your stalled car. Although...Ch. 5 - It is not easy to walk on an icy sidewalk without...Ch. 5 - A car rounds a curve at a steady 50 km/h. If it...Ch. 5 - Will the acceleration of a car be the same when a...Ch. 5 - Describe all the forces acting on a child riding a...Ch. 5 - A child on a sled comes flying over the crest of a...Ch. 5 - Sometimes it is said that water is removed from...Ch. 5 - Technical reports often specify only the rpm for...Ch. 5 - A girl is whirling a ball on a string around her...Ch. 5 - The game of tetherball is played with a ball tied...Ch. 5 - Astronauts who spend long periods in outer space...Ch. 5 - A bucket of water can be whirled in a vertical...Ch. 5 - A car maintains a constant speed v as it traverses...Ch. 5 - Why do bicycle riders lean in when rounding a...Ch. 5 - Why do airplanes bank when they turn? How would...Ch. 5 - For a drag force of the form F = bv, what are the...Ch. 5 - Suppose two forces act on an object, one force...Ch. 5 - (I) If the coefficient of kinetic friction between...Ch. 5 - (I) A force of 35.0 N is required to start a...Ch. 5 - (I) Suppose you are standing on a train...Ch. 5 - (I) The coefficient of static friction between...Ch. 5 - (I) What is the maximum acceleration a car can...Ch. 5 - (II) (a) A box sits at rest on a rough 33 inclined...Ch. 5 - (II) A 25.0-kg box is released on a 27 incline and...Ch. 5 - (II) A car can decelerate at 3.80 m/s2 without...Ch. 5 - (II) A skier moves down a 27 slope at constant...Ch. 5 - (II) A wet bar of soap slides freely down a ramp...Ch. 5 - (II) A box is given a push so that it slides...Ch. 5 - (II) (a) Show that the minimum stopping distance...Ch. 5 - (II) A 1280-kg car pulls a 350-kg trailer. The car...Ch. 5 - (II) Police investigators, examining the scene of...Ch. 5 - (II) Piles of snow on slippery roofs can become...Ch. 5 - (II) A small box is held in place against a rough...Ch. 5 - (II) Two crates, of mass 65 kg and 125 kg, are in...Ch. 5 - (II) The crate shown in Fig. 5-33 lies on a plane...Ch. 5 - (II) A crate is given an initial speed of 3.0 m/s...Ch. 5 - (II) Two blocks made of different materials...Ch. 5 - (II) For two blocks, connected by a cord and...Ch. 5 - (II) A flatbed truck is carrying a heavy crate....Ch. 5 - (II) In Fig 535 the coefficient of static friction...Ch. 5 - (II) Determine a formula for the acceleration of...Ch. 5 - (II) A small block of mass m is given an initial...Ch. 5 - (II) A 75-kg snowboarder has an initial velocity...Ch. 5 - (II) A package of mass m is dropped vertically...Ch. 5 - (II) Two masses mA = 2.0 kg and mB = 5.0 kg are on...Ch. 5 - (II) A child slides down a slide with a 34...Ch. 5 - (II) (a) Suppose the coefficient of kinetic...Ch. 5 - (III) A 3.0-kg block sits on top of a 5.0-kg block...Ch. 5 - (III) A 4.0-kg block is stacked on top of a...Ch. 5 - (III) A small block of mass m rests on the rough...Ch. 5 - (I) What is the maximum speed with which a 1200-kg...Ch. 5 - (I) A child sitting 1.20 m from the center of a...Ch. 5 - (I) A jet plane traveling 1890 km/h (525 m/s)...Ch. 5 - (II) Is it possible to whirl a bucket of water...Ch. 5 - (II) How fast (in rpm) must a centrifuge rotate if...Ch. 5 - (II) Highway curves are marked with a suggested...Ch. 5 - (II) At what minimum speed must a roller coaster...Ch. 5 - (II) A sports car crosses the bottom of a valley...Ch. 5 - (II) How large must the coefficient of static...Ch. 5 - (II) Suppose the space shuttle is in orbit 400 km...Ch. 5 - (II) A bucket of mass 2.00 kg is whirled in a...Ch. 5 - (II) How many revolutions per minute would a...Ch. 5 - (II) Use dimensional analysis (Section 1-7) to...Ch. 5 - (II) A jet pilot takes his aircraft in a vertical...Ch. 5 - (II) A proposed space station consists of a...Ch. 5 - (II) On an ice rink two skaters of equal mass grab...Ch. 5 - (II) Redo Example 511, precisely this time, by not...Ch. 5 - (II) A coin is placed 12.0cm from the axis of a...Ch. 5 - (II) The design of a new road includes a straight...Ch. 5 - (II) A 975-kg sports car (including driver)...Ch. 5 - (II) Two blocks with masses mA and mB, are...Ch. 5 - (II) Tarzan plans to cross a gorge by swinging in...Ch. 5 - (II) A pilot performs an evasive maneuver by...Ch. 5 - (III) The position of a particle moving in the xy...Ch. 5 - (III) If a curve with a radius of 85 m is properly...Ch. 5 - Since the curve is designed for a speed of 85...Ch. 5 - Prob. 60PCh. 5 - (II) In Problem 60 assume the tangential...Ch. 5 - (II) An object moves in a circle of radius 22 m...Ch. 5 - (III) A particle rotates in a circle of radius...Ch. 5 - (III) An object of mass m is constrained to move...Ch. 5 - (I) Use dimensional analysis (Section 17) in...Ch. 5 - (II) The terminal velocity of a 3 105 kg raindrop...Ch. 5 - (II) An object moving vertically has v=v0at t = 0....Ch. 5 - (III) The drag force on large objects such as...Ch. 5 - (III) A bicyclist can cost down a 7.0 hill at a...Ch. 5 - (III) Two drag forces act on a bicycle and rider:...Ch. 5 - (III) Determine a formula for the position and...Ch. 5 - (III) A block of mass m slides along a horizontal...Ch. 5 - (III) Show that the maximum distance the block in...Ch. 5 - (III) You dive straight down into a pool of water....Ch. 5 - (III) A motorboat traveling at a speed of 2.4 m/s...Ch. 5 - A coffee cup on the horizontal dashboard of a car...Ch. 5 - A 2.0-kg silverware drawer does not slide readily....Ch. 5 - A roller coaster reaches the top of the steepest...Ch. 5 - An 18.0-kg box is released on a 37.0 inclinc and...Ch. 5 - A flat puck (mass M) is revolved in a circle on a...Ch. 5 - A motorcyclist is coasting with the engine off at...Ch. 5 - In a Rotor-ride at a carnival, people rotate in a...Ch. 5 - A device for training astronauts and jet fighter...Ch. 5 - A 1250-kg car rounds a curve of radius 72 m banked...Ch. 5 - Determine the tangential and centripetal...Ch. 5 - The 70.0-kg climber in Fig. 550 is supported in...Ch. 5 - A small mass m is set on the surface of a sphere,...Ch. 5 - A 28.0-kg block is connected to an empty 2.00-kg...Ch. 5 - A car is heading down a slippery road at a speed...Ch. 5 - What is the acceleration experienced by the tip of...Ch. 5 - An airplane traveling at 480 km/h needs to reverse...Ch. 5 - A banked curve of radius R in a new highway...Ch. 5 - A small head of mass m is constrained to slide...Ch. 5 - Earth is not quite an inertial frame. We often...Ch. 5 - While fishing, you get bored and start to swing a...Ch. 5 - Consider a train that rounds a curve with a radius...Ch. 5 - A car starts rolling down a 1-in-4 hill (1-in-4...Ch. 5 - The sides of a cone make an angle with the...Ch. 5 - A 72kg water skier is being accelerated by a ski...Ch. 5 - A ball of mass m = 1.0 kg at the end of a thin...Ch. 5 - A car drives at a constant speed around a banked...Ch. 5 - (III) The force of air resistance (drag force) on...Ch. 5 - (III) The coefficient of kinetic friction k...Ch. 5 - (III) Assume a net force F = mg kv2 acts during...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Choose the best answer to each of the following. Explain your reasoning. About how many galaxies are there in a...
Cosmic Perspective Fundamentals
18. SCIENTIFIC THINKING By measuring the fossil remains of Homo floresiensis, scientists have estimated its wei...
Campbell Biology: Concepts & Connections (9th Edition)
Predict the type of reaction (if any) that occurs between each pair of substances. Write balanced molecular equ...
Introductory Chemistry (6th Edition)
59. A soap bubble is essentially a thin film of water surrounded by air. The colors you see in soap bubbles are...
College Physics: A Strategic Approach (3rd Edition)
Johnny was vigorously exercising the only joints in the skull that are freely movable. What would you guess he ...
Anatomy & Physiology (6th Edition)
The following results were obtained from a broth dilution test for microbial susceptibility. Antibiotic Concent...
Microbiology: An Introduction
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Redo Example 5, assuming that there is no upward lift on the plane generated by its wings. Without such lift, the guideline slopes downward due to the weight of the plane. For purposes of significant figures, use 2.91 kg for the mass of the plane, 12.2 m for the length of the guideline, and 18.2 and 36.4 m/s for the speeds. (a) Number (b) Number Units Unitsarrow_forwardA car weighs 1100kg and can accelerate from 0 to 60m/h in 7.1 seconds on a flat ground. what is the steepest grade your driveway can be if your house is located on a hill? Assume no friction forces, and approximate the driveway as a straight inclined plane.arrow_forward(b) The coefficient of kinetic friction between a 40 kg crate and the ware- house floor is 70% of the corresponding coefficient of static friction. The crate falls off a forklift that is moving at 3 m/s and then slides along the warehouse floor for a distance of 2.5 m before coming to rest. What is the coefficient of static friction between the crate and the floor?arrow_forward
- I need solution :))arrow_forwardRedo Example 5, assuming that there is no upward lift on the plane generated by its wings. Without such lift, the guideline slopes downward due to the weight of the plane. For purposes of significant figures, use 0.954 kg for the mass of the plane, 18.1m for the length of the guideline, and 18.8 and 37.6 m/s for the speeds. (a) Number (b) Number i eTextbook and Media Save for Later Units Units > Attempts: 0 of 5 used Submit Answerarrow_forwardA block of mass m slides down from rest on a rough incline of length 8m where the incline makes an angle of 30° with the horizontal. The block comes to rest on the rough horizontal surface after sliding for 4 m. The coefficient of kinetic friction on the incline is 0.30. The coefficient of kinetic friction on the horizontal surface is different from the incline, find this value using two approaches: (i) Using Newton's laws of motion and Kinematics and 30⁰ (ii) Using Work-Kinetic Energy Theorem (Give answer to 2 sig. figs.) 4 m 8 m WAarrow_forward
- I need help with this question.arrow_forward. A car is traveling at 50.0 km/h on a flat highway. (a) If the coefficient of friction between road and tires on a rainy day is 0.100, what is the minimum distance in which the car will stop? (b) What is the stopping dis- tance when the surface is dry and the coefficient of friction is 0.600?arrow_forwardA certain car traveling at 97 km/h can stop in 46 m on a level road. Determine the coefficient of friction between the tires and the road. Assume that the car starts skidding the moment the driver hits the brakes.arrow_forward
- A 600 Kg car is moving on a level road at 30 m/s. (a) How large is the retarding force(assumed constant) is required to stop it in a distance of 70 m? (b) What is the minimum coefficient of friction between the tires and the roadway if this is possible ?arrow_forward(III) (a) Suppose the coefficient of kinetic friction between ma and the plane in Fig. 4-62 is µk = 0.15, and that mA = mB = 2.7 kg. As mB moves down, determine the magnitude of the acceleration of ma and mg, given 0 = 34°. (b) What smallest value of pk will keep the system from accelerating? [Ignore masses of the (frictionless) pulley and the cord.] mB FIGURE 4-62 Problem 67.arrow_forward1. Given that sinθ = 2/3 and cosθ = √5/3, find the cotθ, and tanθ. 2. To move a large crate across a rough floor, you push on it with a force F at an angle of 21° below the horizontal, as shown in Figure 6–18. Find the force necessary to start the crate moving, given that the mass of the crate is 32 kg and the coefficient of static friction between the crate and the floor is 0.57. Find the acceleration of the crate if the applied force is 330 N and the coefficient of kinetic friction is 0.45.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Work and Energy - Physics 101 / AP Physics 1 Review with Dianna Cowern; Author: Physics Girl;https://www.youtube.com/watch?v=rKwK06stPS8;License: Standard YouTube License, CC-BY