|| At night while it is dark, a driver inadvertently parks his car on a drawbridge. Some time later, the bridge must be raised to allow a boat to pass through. The coefficients of friction between the bridge and the car’s tires are μ s = 0.750 and μ k = 0.550. Start each part of your solution to this problem with a free-body diagram of the car. (a) At what angle will the car just start to slide? (b) If the bridge attendant sees the car suddenly start to slide and immediately turns off the bridge's motor, what will be the car’s acceleration after it has begun to move?
|| At night while it is dark, a driver inadvertently parks his car on a drawbridge. Some time later, the bridge must be raised to allow a boat to pass through. The coefficients of friction between the bridge and the car’s tires are μ s = 0.750 and μ k = 0.550. Start each part of your solution to this problem with a free-body diagram of the car. (a) At what angle will the car just start to slide? (b) If the bridge attendant sees the car suddenly start to slide and immediately turns off the bridge's motor, what will be the car’s acceleration after it has begun to move?
|| At night while it is dark, a driver inadvertently parks his car on a drawbridge. Some time later, the bridge must be raised to allow a boat to pass through. The coefficients of friction between the bridge and the car’s tires are μs = 0.750 and μk = 0.550. Start each part of your solution to this problem with a free-body diagram of the car. (a) At what angle will the car just start to slide? (b) If the bridge attendant sees the car suddenly start to slide and immediately turns off the bridge's motor, what will be the car’s acceleration after it has begun to move?
A planar double pendulum consists of two point masses \[m_1 = 1.00~\mathrm{kg}, \qquad m_2 = 1.00~\mathrm{kg}\]connected by massless, rigid rods of lengths \[L_1 = 1.00~\mathrm{m}, \qquad L_2 = 1.20~\mathrm{m}.\]The upper rod is hinged to a fixed pivot; gravity acts vertically downward with\[g = 9.81~\mathrm{m\,s^{-2}}.\]Define the generalized coordinates \(\theta_1,\theta_2\) as the angles each rod makes with thedownward vertical (positive anticlockwise, measured in radians unless stated otherwise).At \(t=0\) the system is released from rest with \[\theta_1(0)=120^{\circ}, \qquad\theta_2(0)=-10^{\circ}, \qquad\dot{\theta}_1(0)=\dot{\theta}_2(0)=0 .\]Using the exact nonlinear equations of motion (no small-angle or planar-pendulumapproximations) and assuming the rods never stretch or slip, determine the angle\(\theta_2\) at the instant\[t = 10.0~\mathrm{s}.\]Give the result in degrees, in the interval \((-180^{\circ},180^{\circ}]\).
What are the expected readings of the ammeter and voltmeter for the circuit in the figure below? (R = 5.60 Ω, ΔV = 6.30 V)
ammeter
I =
simple diagram to illustrate the setup for each law- coulombs law and biot savart law
Chapter 5 Solutions
Masteringphysics With Pearson Etext - Valuepack Access Card - For College Physics
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.