
GENERAL CHEMISTRY-MOD.MASTERINGCHEM.
11th Edition
ISBN: 9780134193601
Author: Petrucci
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 5, Problem 62E
Interpretation Introduction
(a)
Interpretation:
A molecular view depicting the equivalence point in the titration of HCl (aq) with KOH (aq) should be sketched.
Concept introduction:
- Titration is a method of quantitative analysis which is used to determine the concentration of unknown solutions.
- A titrant of known concentration is added to an analyte of known volume in the presence of a suitable indicator until the equivalence point is reached which is indicated by a change in the color of the analyte.
- In a titration, equivalence point is the point at which the amount of titrant added is just sufficient to neutralize the amount of analyte taken.
Interpretation Introduction
(b)
Interpretation:
A molecular view depicting the halfway to equivalence point in the titration of CH3COOH (aq) with NaOH (aq) should be sketched.
Concept introduction:
- Titration is a method of quantitative analysis which is used to determine the concentration of unknown solutions.
- A titrant of known concentration is added to an analyte of known volume in the presence of a suitable indicator until the equivalence point is reached which is indicated by a change in the color of the analyte.
- In a titration, equivalence point is the point at which the amount of titrant added is just sufficient to neutralize the amount of analyte taken.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
I
Draw the anti-Markovnikov product of the hydration of this alkene.
this problem.
Note for advanced students: draw only one product, and don't worry about showing any stereochemistry. Drawing dash and wedge bonds has been disabled for
esc
esc
☐
Explanation
Check
F1
1
2
F2
# 3
F3
+
$
14
×
1. BH THE
BH3
2. H O NaOH
'2 2'
Click and drag to start
drawing a structure.
F4
Q
W
E
R
A
S
D
%
905
LL
F5
F6
F7
© 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibility
<
&
6
7
27
8
T
Y
U
G
H
I
F8
F9
F10
F11
F12
9
0
J
K
L
P
+ //
command option
Z
X
C
V B
N
M
H
H
rol
option
command
AG/F-2° V
3. Before proceeding with this problem you may want to glance at p. 466 of your textbook
where various oxo-phosphorus derivatives and their oxidation states are summarized.
Shown below are Latimer diagrams for phosphorus at pH values at 0 and 14:
-0.93
+0.38
-0.50
-0.51 -0.06
H3PO4 →H4P206 →H3PO3 →→H3PO₂ → P → PH3
Acidic solution
Basic solution
-0.28
-0.50
3--1.12
-1.57
-2.05 -0.89
PO HPO H₂PO₂ →P → PH3
-1.73
a) Under acidic conditions, H3PO4 can be reduced into H3PO3 directly (-0.28V), or via the
formation and reduction of H4P206 (-0.93/+0.38V). Calculate the values of AG's for both
processes; comment.
(3 points)
0.5
PH
P
0.0
-0.5
-1.0-
-1.5-
-2.0
H.PO,
-2.3+
-3 -2
-1
1
2
3
2
H,PO,
b) Frost diagram for phosphorus under acidic
conditions is shown. Identify possible
disproportionation and comproportionation processes;
write out chemical equations describing them. (2 points)
H,PO
4
S
Oxidation stale, N
Chapter 5 Solutions
GENERAL CHEMISTRY-MOD.MASTERINGCHEM.
Ch. 5 - Using information from this chapter, indicate...Ch. 5 - Select the (a) best and (b) poorest electrical...Ch. 5 - What response would you expect in the apparatus of...Ch. 5 - NH2(aq) conducts electric current only weakly. The...Ch. 5 - Sketches (a-c) are molecular views of the solute...Ch. 5 - Prob. 6ECh. 5 - Determine the concentration of the ion indicated...Ch. 5 - Which solution has the greatest [SO42] ? a....Ch. 5 - A solution is prepared by dissolving...Ch. 5 - Prob. 10E
Ch. 5 - Prob. 11ECh. 5 - Prob. 12ECh. 5 - Which of the following aqueous solutions has the...Ch. 5 - Prob. 14ECh. 5 - Prob. 15ECh. 5 - If 18.2 mL H2O evaporates from 1.00 L of a...Ch. 5 - Prob. 17ECh. 5 - Assuming the volumes are additive, what he [NO3]...Ch. 5 - Complete each of the following as net ionic...Ch. 5 - Prob. 20ECh. 5 - Prob. 21ECh. 5 - Predict in each case whether a reaction is likely...Ch. 5 - What reagent solution might you use to separate...Ch. 5 - Prob. 24ECh. 5 - Prob. 25ECh. 5 - Prob. 26ECh. 5 - Complete each of the following as a net ionic...Ch. 5 - Every antacid one or more ingredients capable of...Ch. 5 - Prob. 29ECh. 5 - Prob. 30ECh. 5 - Which solutions would you use to precipitate Mg24...Ch. 5 - Prob. 32ECh. 5 - Assign oxidation states to the elements involved...Ch. 5 - Explain why these reactions cannot occur as...Ch. 5 - Prob. 35ECh. 5 - Prob. 36ECh. 5 - Balance these equations for redox reactions...Ch. 5 - Balance these equations for redox reactions...Ch. 5 - Balance these equations for redox reactions in...Ch. 5 - Balance these equations for redox reactions...Ch. 5 - Balance these equations for disproportionation...Ch. 5 - Prob. 42ECh. 5 - Prob. 43ECh. 5 - Prob. 44ECh. 5 - The following reactions do not occur in aqueous...Ch. 5 - The reactions do not occur in aqueous solutions....Ch. 5 - What are the oxidizing and reducing agents in the...Ch. 5 - Thiosulfate ion, S2O32 , is a reducing agent can...Ch. 5 - What volume of 0.0962 N NaOH is required to...Ch. 5 - Prob. 50ECh. 5 - Prob. 51ECh. 5 - How many milliliters of 0.0750MBa(OH)2 are...Ch. 5 - An NaOH(aq) solution cannot be made up to an exact...Ch. 5 - Household ammonia, used as a window cleaner and...Ch. 5 - Prob. 55ECh. 5 - Prob. 56ECh. 5 - Prob. 57ECh. 5 - A 7.55 g sample of Na2CO2(s) is added to 125 mL of...Ch. 5 - Prob. 59ECh. 5 - Prob. 60ECh. 5 - Prob. 61ECh. 5 - Prob. 62ECh. 5 - A KMnO4(eq) solution is to be standardized by...Ch. 5 - Prob. 64ECh. 5 - An iron ore sample weighing0.6132 g dissolved...Ch. 5 - The concentration of Mn2+(aq) can be determined by...Ch. 5 - The titration of 5.00 mL of a saturated solution...Ch. 5 - Prob. 68ECh. 5 - Prob. 69IAECh. 5 - Following are some laboratory methods occasionally...Ch. 5 - Prob. 71IAECh. 5 - You have a solution that is 0.0250 M Ba(OH) and...Ch. 5 - Prob. 73IAECh. 5 - Prob. 74IAECh. 5 - Prob. 75IAECh. 5 - An unknown whitesolid consists of two compounds,...Ch. 5 - Balance these equations for reactions in acidic...Ch. 5 - Prob. 78IAECh. 5 - A method of producing phosphine, PH2, from...Ch. 5 - Prob. 80IAECh. 5 - Prob. 81IAECh. 5 - A piece of marble (assume it is pure CaCO2) reacts...Ch. 5 - The reaction below can be used as laboratory...Ch. 5 - Refer to Example 5-10. Suppose that the KMnO4(aq)...Ch. 5 - Prob. 85IAECh. 5 - A 0.4324 g sample of a potassium hydroxidelithium...Ch. 5 - Prob. 87IAECh. 5 - Prob. 88IAECh. 5 - The active ingredients h a particular antacid...Ch. 5 - Prob. 90IAECh. 5 - Prob. 91IAECh. 5 - Copper refining traditionally involves "roasting"...Ch. 5 - Prob. 93IAECh. 5 - Sodium cyclopentadienide, NaC2H2, is a common...Ch. 5 - Manganese is derived from pyrolusiteore, an impure...Ch. 5 - Prob. 96FPCh. 5 - Prob. 97FPCh. 5 - Prob. 98FPCh. 5 - Prob. 99SAECh. 5 - Prob. 100SAECh. 5 - Prob. 101SAECh. 5 - Prob. 102SAECh. 5 - Prob. 103SAECh. 5 - Prob. 104SAECh. 5 - Prob. 105SAECh. 5 - Prob. 106SAECh. 5 - Prob. 107SAECh. 5 - When aqueous sodium carbonate, Na2CO2, is treated...Ch. 5 - Prob. 109SAECh. 5 - Consider the following redox reaction:...Ch. 5 - Balance the following oxidation—reduction...Ch. 5 - Prob. 112SAECh. 5 - What is the simplest ratio a:b when the equation...Ch. 5 - In the half-reaction in which NpO2+ is converted...Ch. 5 - Which list of compounds contains a nonelectrolyte,...Ch. 5 - Prob. 116SAECh. 5 - Which list of compounds contains two soluble...Ch. 5 - Classify each of the blowing statements as true or...Ch. 5 - Which of the following reactions are oxidation-...Ch. 5 - Prob. 120SAECh. 5 - Prob. 121SAE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- 4. For the following complexes, draw the structures and give a d-electron count of the metal: a) Tris(acetylacetonato)iron(III) b) Hexabromoplatinate(2-) c) Potassium diamminetetrabromocobaltate(III) (6 points)arrow_forward2. Calculate the overall formation constant for [Fe(CN)6]³, given that the overall formation constant for [Fe(CN)6] 4 is ~1032, and that: Fe3+ (aq) + e = Fe²+ (aq) E° = +0.77 V [Fe(CN)6]³ (aq) + e¯ = [Fe(CN)6] (aq) E° = +0.36 V (4 points)arrow_forward5. Consider the compounds shown below as ligands in coordination chemistry and identify their denticity; comment on their ability to form chelate complexes. (6 points) N N A B N N N IN N Carrow_forward
- 1. Use standard reduction potentials to rationalize quantitatively why: (6 points) (a) Al liberates H2 from dilute HCl, but Ag does not; (b) Cl2 liberates Br2 from aqueous KBr solution, but does not liberate C12 from aqueous KCl solution; c) a method of growing Ag crystals is to immerse a zinc foil in an aqueous solution of AgNO3.arrow_forwardWhat would be the best choices for the missing reagents 1 and 3 in this synthesis? 1 1. PPh3 2. n-BuLi 3 2 • Draw the missing reagents in the drawing area below. You can draw them in any arrangement you like. • Do not draw the missing reagent 2. If you draw 1 correctly, we'll know what it is. • Note: if one of your reagents needs to contain a halogen, use bromine. Click and drag to start drawing a structure. Xarrow_forwardWhat is the missing reactant R in this organic reaction? N N H3O+ +R + • Draw the structure of R in the drawing area below. • Be sure to use wedge and dash bonds if it's necessary to draw one particular enantiomer. Click and drag to start drawing a structure. fmarrow_forward
- The product on the right-hand side of this reaction can be prepared from two organic reactants, under the conditions shown above and below the arrow. Draw 1 and 2 below, in any arrangement you like. 1+2 NaBH3CN H+ N Click and drag to start drawing a structure. 5arrow_forwardAssign this HSQC Spectrum ( please editing clearly on the image)arrow_forward(a 4 shows scanning electron microscope (SEM) images of extruded actions of packing bed for two capillary columns of different diameters, al 750 (bottom image) and b) 30-μm-i.d. Both columns are packed with the same stationary phase, spherical particles with 1-um diameter. A) When the columns were prepared, the figure shows that the column with the larger diameter has more packing irregularities. Explain this observation. B) Predict what affect this should have on band broadening and discuss your prediction using the van Deemter terms. C) Does this figure support your explanations in application question 33? Explain why or why not and make any changes in your answers in light of this figure. Figure 4 SEM images of sections of packed columns for a) 750 and b) 30-um-i.d. capillary columns.³arrow_forward
- fcrip = ↓ bandwidth Il temp 32. What impact (increase, decrease, or no change) does each of the following conditions have on the individual components of the van Deemter equation and consequently, band broadening? Increase temperature Longer column Using a gas mobile phase instead of liquid Smaller particle stationary phase Multiple Paths Diffusion Mass Transferarrow_forward34. Figure 3 shows Van Deemter plots for a solute molecule using different column inner diameters (i.d.). A) Predict whether decreasing the column inner diameters increase or decrease bandwidth. B) Predict which van Deemter equation coefficient (A, B, or C) has the greatest effect on increasing or decreasing bandwidth as a function of i.d. and justify your answer. Figure 3 Van Deemter plots for hydroquinone using different column inner diameters (i.d. in μm). The data was obtained from liquid chromatography experiments using fused-silica capillary columns packed with 1.0-μm particles. 35 20 H(um) 큰 20 15 90 0+ 1500 100 75 550 01 02 594 05 μ(cm/sec) 30 15 10arrow_forwardelow are experimentally determined van Deemter plots of column efficiency, H, vs. flow rate. H is a quantitative measurement of band broadening. The left plot is for a liquid chromatography application and the night is for gas chromatography. Compare and contrast these two plots in terms of the three band broadening mechanisms presented in this activity. How are they similar? How do they differ? Justify your answers.? 0.4 H (mm) 0.2 0.1- 0.3- 0 0.5 H (mm) 8.0 7.0 6.0 5.0 4.0- 3.0 T +++ 1.0 1.5 0 2.0 4.0 Flow Rate, u (cm/s) 6.0 8.0 Flow Rate, u (cm/s)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax

Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning

Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning

Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning

Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning


Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Acid-Base Titration | Acids, Bases & Alkalis | Chemistry | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=yFqx6_Y6c2M;License: Standard YouTube License, CC-BY