
Concept explainers
(a)
Interpretation:
The total vapor pressure of the solutions at
Concept Introduction:
The equilibrium between a liquid and its vapor produces a characteristic vapor pressure for each substance that depends on the temperature. The lowering of the vapor pressure is caused by a lesser ability of the solvent to evaporate, so equilibrium is reached with a smaller concentration of the solvent in the gas phase. The vapor pressure of a solution is expressed using Raoult’s law:
The vapor pressure of the solvent
Mole fraction: Mole fraction of a substance in a solution is the number of moles of that substance divided by the total number of moles of all substances present. The formula is,
Dalton’s Law:
The total pressure of a gas mixture is the sum of the partial pressures of its component gases.
Where
The partial pressure of the gas can be obtained by multiplying the total pressure of the mixture with the percent of the gases present in the mixture.
(a)

Answer to Problem 5C.12E
The total vapor pressure of the solution at
The mole fraction of hexane in the vapor phase above the solution is
The mole fraction of cyclohexane in the vapor phase above the solution is
Explanation of Solution
Total vapor pressure of the solution:
Given,
The vapor pressure of pure hexane at
The vapor pressure of pure cyclohexane at
Moles of hexane is
Moles of cyclohexane is
The mole fraction of hexane is calculated as,
Mole fraction of hexane=
Mole fraction of hexane=
Mole fraction of hexane=
The mole fraction of hexane is
The vapor pressure of hexane is calculated as,
The vapor pressure of hexane is
The mole fraction of cyclohexane is calculated as,
Mole fraction of cyclohexane=
Mole fraction of cyclohexane=
Mole fraction of cyclohexane=
The mole fraction of cyclohexane is
The vapor pressure of cyclohexane is calculated as,
The vapor pressure of cyclohexane is
The total vapor pressure is calculated using Dalton’s law.
The vapor pressure of hexane
The vapor pressure of cyclohexane
The total vapor pressure of the solution at
Mole fraction of hexane in vapor phase:
The vapor pressure of hexane is
The total vapor pressure of the solution at
The mole fraction of hexane in the vapor phase is calculated as
The mole fraction of hexane in the vapor phase above the solution is
Mole fraction of cyclohexane in vapor phase:
The vapor pressure of hexane is
The total vapor pressure of the solution at
The mole fraction of cyclohexane in the vapor phase is calculated as
The mole fraction of cyclohexane in the vapor phase above the solution is
(b)
Interpretation:
The total vapor pressure of the solutions at
Concept Introduction:
Refer to part (a).
(b)

Answer to Problem 5C.12E
The total vapor pressure of the solutions at
The mole fraction of hexane in the vapor phase above the solution is
The mole fraction of cyclohexane in the vapor phase above the solution is
Explanation of Solution
Given,
The vapor pressure of pure hexane at
The vapor pressure of pure cyclohexane at
Grams of hexane is
Grams of cyclohexane is
The moles of hexane is calculated as,
Moles of hexane=
Moles of hexane=
The moles of cyclohexane is calculated as,
Moles of cyclohexane=
Moles of cyclohexane=
The mole fraction of hexane is calculated as,
Mole fraction of hexane=
Mole fraction of hexane=
Mole fraction of hexane=
The mole fraction of hexane is
The vapor pressure of hexane is calculated as,
The vapor pressure of hexane is
The mole fraction of cyclohexane is calculated as,
Mole fraction of cyclohexane=
Mole fraction of cyclohexane=
Mole fraction of cyclohexane=
The mole fraction of cyclohexane is
The vapor pressure of cyclohexane is calculated as,
The vapor pressure of cyclohexane is
The total vapor pressure is calculated using Dalton’s law.
The vapor pressure of hexane
The vapor pressure of cyclohexane
The total vapor pressure of the solution at
Mole fraction of hexane in vapor phase:
The vapor pressure of hexane is
The total vapor pressure of the solution at
The mole fraction of hexane in the vapor phase is calculated as
The mole fraction of hexane in the vapor phase above the solution is
Mole fraction of cyclohexane in vapor phase:
The vapor pressure of hexane is
The total vapor pressure of the solution at
The mole fraction of cyclohexane in the vapor phase is calculated as
The mole fraction of cyclohexane in the vapor phase above the solution is
Want to see more full solutions like this?
Chapter 5 Solutions
Chemical Principles: The Quest for Insight
- Please help me with number 5 using my data and graph. I think I might have number 3 and 4 but if possible please check me. Thanks in advance!arrow_forwarddict the major products of this organic reaction. C Explanation Check 90 + 1.0₂ 3 2. (CH3)2S Click and drag f drawing a stru © 2025 McGraw Hill LLC. All Rights Reserved. • 22 4 5 7 8 Y W E R S F H Bilarrow_forwardcan someone draw out the reaction mechanism for this reaction showing all the curly arrows and 2. Draw the GPNA molecule and identify the phenylalanine portion. 3. Draw L-phenylalanine with the correct stereochemistryarrow_forward
- What is the reaction mechanism for this?arrow_forwardPredict the major products of both organic reactions. Be sure to use wedge and dash bonds to show the stereochemistry of the products when it's important, for example to distinguish between two different major products. esc esc Explanation Check 2 : + + X H₁₂O + Х ง WW E R Y qab Ccaps lock shift $ P X Click and drag to start drawing a structure. © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibility Bil T FR F18 9 G t K L Z X V B N M control opption command command T C darrow_forwardDraw the Markovnikov product of the hydrohalogenation of this alkene. this problem. Note for advanced students: draw only one product, and don't worry about showing any stereochemistry. Drawing dash and wedge bonds has been disabled for caps lock Explanation Check 2 W E R + X 5 HCI Click and drag to start drawing a structure. © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibility Bil Y F G H K L ZZ X C V B N M control opption command F10 F10 command 4 BA Ar Carrow_forward
- I don't understand why the amide on the top left, with the R attached to one side, doesn't get substituted with OH to form a carboxylic acid. And if only one can be substituted, why did it choose the amide it chose rather than the other amide?arrow_forwardesc Draw the Markovnikov product of the hydration of this alkene. Note for advanced students: draw only one product, and don't worry about showing any stereochemistry. Drawing dash and wedge bonds has been disabled for this problem. Explanation Check BBB + X 0 1. Hg (OAc)2, H₂O 2. Na BH 5 Click and drag to start drawing a structure. © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibility Bl P 豆 28 2 28 N 9 W E R T Y A S aps lock G H K L Z X C V B N M T central H command #e commandarrow_forwardC A student proposes the transformation below in one step of an organic synthesis. There may be one or more products missing from the right-hand side, but there are no reagents missing from the left-hand side. There may also be catalysts, small inorganic reagents, and other important reaction conditions missing from the arrow. • Is the student's transformation possible? If not, check the box under the drawing area. . If the student's transformation is possible, then complete the reaction by adding any missing products to the right-hand side, and adding required catalysts, inorganic reagents, or other important reaction conditions above and below the arrow. • You do not need to balance the reaction, but be sure every important organic reactant or product is shown. (X) This transformation can't be done in one step. + Tarrow_forward
- く Predict the major products of this organic reaction. If there aren't any products, because nothing will happen, check the box under the drawing area instead. No reaction. Explanation Check OH + + ✓ 2 H₂SO 4 O xs H₂O 2 Click and drag to start drawing a structure. © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Centerarrow_forwardDraw the skeletal ("line") structure of 1,3-dihydroxy-2-pentanone. Click and drag to start drawing a structure. X Parrow_forwardPredicting edict the major products of this organic reaction. If there aren't any products, because nothing will happen, check the box under the drawing area instead. + No reaction. Explanation Check HO Na O H xs H₂O 2 Click and drag to start drawing a structure. © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center Iarrow_forward
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning




