FUNDAMENTALS OF THERMODYNAMICS
10th Edition
ISBN: 9781119634928
Author: Borgnakke
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
Cogeneration is often used where a steam supply is needed for industrial process
energy. Assume a supply of 5 kg/s steam at 0.5 MPa is needed. Rather than
generating this from a pump and boiler, the setup in below. is used so the
supply is extracted from the high-pressure turbine. Find the power the turbine
now cogenerates in this process.
2
3
HP
LP
In a steam turbine steam at 2 MPa, 360°C is
expanded to 8 kPa. It then enters a
condenser, where it is condensed to saturated
liquid water. The pump feeds back the water
into the boiler. Assume ideal processes, find
per kg of steam the net work and the cycle
efficiency.
3(360°C)
2 MPa
8 kPa
See photo below
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 2. A reverse Carnot cycle requires 3 hp and extracts energy from the laketo heat a house .If the house is kept at 70°Fand requires 2110 kj/min... what is the temperature of the lake?arrow_forwardAn Otto cycle has a heat rejected of 300 kJ and work of 700 kJ. Find the cycle efficiency.arrow_forwardA Steam power plant uses a Rankine cycle to produce electrical power. The boiler pressure is 2 MPa and the temperature at the turbine inlet is 300C. The pump inlet pressure is 0.025 MPa and the entropy is 0.8931 kJ/kg-k. The turbine gives 1MW of work to the generator. Find the dryness of the steam at turbine exit, Wp, Qa, Qr, Wt, Wnet, efficiency, SR, and mass flow rate of steam. (84.65%, 2.0143 kJ/kg, 2749.56 kJ/kg, 1986.15 kJ/kg, 765.42 kJ/kg, 763.41 kJ/kg, 27.76%, 4.7157 kg/kWh, 1.3064 kg/s) -Draw the T-S diagram with properly labelled points and solve the problems. Show your COMPLETE solution - Use the Steam Table provided if necessary.arrow_forward
- A reversed carnot cycle that operates between -2 degrees celsius and 50 degrees celsius needs 45 KW compressor power. Find the tons of refrigeration.arrow_forwardIn a Rankine cycle, steam leaves the boiler and enters the turbine at 4 MPa, 400C. The condenser pressure is 10 kPa. What is the pump work in kJ/kg?arrow_forwardIn a certain steam plant the turbine develops 703.72 kJ/kg. The heat supplied to the steam in the boiler is 2800 kJ/kg, the heat rejected by the steam to the cooling water in he condenser is 2100 kJ/kg and the network of the cycle is -995 kW. Calculate the pump work in kJ/kg and steam flow rate.arrow_forward
- A small power plant produces 25 kg/s steam at 3 MPa, 600 degrees Celsius in the boiler. It cools the condenser with the ocean water coming in at 12 degrees Celsius and returning at 15 degrees Celsius so the condenser exit is at 45 degrees Celsius. Find the net power output and the required mass flow rate of ocean water.arrow_forwardThe cycle comes with a net power cycle of 25.40 kW. The heat that goes out is 42.30 kW. Find the efficiency of the cycle?arrow_forwardConsider an ideal steam reheat cycle where steam enters the high-pressure turbine at 3.0 MPa, 400°C, and then expands to 0.8 MPa. It is then reheated to 400°C and expands to 10 kPa in the low-pressure turbine. For the engine, find W and ecarrow_forward
- A power plant operating in a Reheat Rankine Cycle produces steam at 3 MPa, 600oC in the boiler. It keeps the condenser at 45oC by transfer of 10 MW out as heat transfer. The first turbine section (high-pressure) expands to 500 kPa and then flow is reheated followed by the expansion in the low-pressure turbine. Provide a detailed solution. Avoid shortcuts. Find the boiler heat transfer including the reheat process (kW)arrow_forwardA 60,000 kw turbine in a reheat cycle steam at 15 MPa, 540˚C enters the engine and expands to 1.95 MPa and 260°C. It reenters the engine at 1.8 MPa and 540˚C. Expansion now occurs to the condenser pressure of 0.0035 MPa. The steam flow is 147,000 kg/hr, generator efficiency is 96%. For actual engine find combined thermal efficiency, combined steam rate, and combined engine efficiency.arrow_forward1. In a Regenerative cycle, the steam is extracted from the turbine at 2 Mpa and 250C for feedwater heating and it is mixed with condenser exit at 30 kpa after pumping. Find the fraction of vapor extracted from the turbine.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Power Plant Explained | Working Principles; Author: RealPars;https://www.youtube.com/watch?v=HGVDu1z5YQ8;License: Standard YouTube License, CC-BY