
Concept explainers
Interpretation:
You work in a semiconductor production plant that relies on several chlorofluorocarbons in its manufacturing process. One day, you find an unlabeled gas cylinder, and you are assigned to figure out what is in the tank. First, you fill a 1.000-L flask with the gas. At a pressure of 250.0 torr and a temperature of 25.000C, you determine that the mass of the gas in the flask is 2.2980 g. Then, you send the flask to an outside lab for elemental analysis, and they report that the gas contains 14.05% C, 44.46% F, and 41.48% Cl by mass. The molecular formula of this gas should be identified.
Concept introduction:
An ideal gas which is known as the perfect gas is a gas whose volume V, Pressure P and temperature T are related through the
Here,
-
n = Number of moles of the gas
R = Universal gas constant
T = Temperature
P = Pressure
Ideal gases are described as the molecules which have negligible size but have an average molar kinetic energy which is dependent on the temperature. When temperature is low most of the gases behave like ideal gases and the ideal

Answer to Problem 5.90PAE
Solution:
Given:
Volume of gas taken= 1.000L
Pressure = 250 torr = 0.329 atm
Temperature = (25+273) K = 298K
Mass of the gas = 2.298g
Percentage of elements present in gas:
Explanation of Solution
The ideal gas equation is as follows:
Or,
Or,
Now, the percent composition of the given elements are:
Divide all with their molar masses to get the number of atoms of each element as follows
Now, divide with the smallest number to calculate the empirical formula:
So, the empirical formula is
Calculate empirical formula mass as follows:
Now,
Or,
Where,
Thus,
Therefore, the molecular formula is
Ideal gases are described as the molecules which have negligible size but have an average molar kinetic energy which is dependent on the temperature. Using the ideal gas equation, the calculated molecular formula of gas is
Want to see more full solutions like this?
Chapter 5 Solutions
Chemistry for Engineering Students
- What is the final product when D-galactose reacts with hydroxylamine?arrow_forwardIndicate the formula of the product obtained by reacting methyl 5-chloro-5-oxopentanoate with 1 mole of 4-penten-1-ylmagnesium bromide.arrow_forwardIn the two chair conformations of glucose, the most stable is the one with all the OH groups in the equatorial position. Is this correct?arrow_forward
- please help me with my homeworkarrow_forwardhelparrow_forwardThe temperature on a sample of pure X held at 1.25 atm and -54. °C is increased until the sample boils. The temperature is then held constant and the pressure is decreased by 0.42 atm. On the phase diagram below draw a path that shows this set of changes. pressure (atm) 2 0 0 200 400 temperature (K) Xarrow_forward
- QUESTION: Answer Question 5: 'Calculating standard error of regression' STEP 1 by filling in all the empty green boxes *The values are all provided in the photo attached*arrow_forwardpressure (atm) 3 The pressure on a sample of pure X held at 47. °C and 0.88 atm is increased until the sample condenses. The pressure is then held constant and the temperature is decreased by 82. °C. On the phase diagram below draw a path that shows this set of changes. 0 0 200 temperature (K) 400 аarrow_forwarder your payment details | bar xb Home | bartleby x + aleksogi/x/isl.exe/1o u-lgNskr7j8P3jH-1Qs_pBanHhviTCeeBZbufuBYT0Hz7m7D3ZcW81NC1d8Kzb4srFik1OUFhKMUXzhGpw7k1 O States of Matter Sketching a described thermodynamic change on a phase diagram 0/5 The pressure on a sample of pure X held at 47. °C and 0.88 atm is increased until the sample condenses. The pressure is then held constant and the temperature is decreased by 82. °C. On the phase diagram below draw a path that shows this set of changes. pressure (atm) 1 3- 0- 0 200 Explanation Check temperature (K) 400 X Q Search L G 2025 McGraw Hill LLC. All Rights Reserved Terms of Use Privacy Cearrow_forward
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning





