Concept explainers
Interpretation:
You work in a semiconductor production plant that relies on several chlorofluorocarbons in its manufacturing process. One day, you find an unlabeled gas cylinder, and you are assigned to figure out what is in the tank. First, you fill a 1.000-L flask with the gas. At a pressure of 250.0 torr and a temperature of 25.000C, you determine that the mass of the gas in the flask is 2.2980 g. Then, you send the flask to an outside lab for elemental analysis, and they report that the gas contains 14.05% C, 44.46% F, and 41.48% Cl by mass. The molecular formula of this gas should be identified.
Concept introduction:
An ideal gas which is known as the perfect gas is a gas whose volume V, Pressure P and temperature T are related through the
Here,
-
n = Number of moles of the gas
R = Universal gas constant
T = Temperature
P = Pressure
Ideal gases are described as the molecules which have negligible size but have an average molar kinetic energy which is dependent on the temperature. When temperature is low most of the gases behave like ideal gases and the ideal
Answer to Problem 5.90PAE
Solution:
Given:
Volume of gas taken= 1.000L
Pressure = 250 torr = 0.329 atm
Temperature = (25+273) K = 298K
Mass of the gas = 2.298g
Percentage of elements present in gas:
Explanation of Solution
The ideal gas equation is as follows:
Or,
Or,
Now, the percent composition of the given elements are:
Divide all with their molar masses to get the number of atoms of each element as follows
Now, divide with the smallest number to calculate the empirical formula:
So, the empirical formula is
Calculate empirical formula mass as follows:
Now,
Or,
Where,
Thus,
Therefore, the molecular formula is
Ideal gases are described as the molecules which have negligible size but have an average molar kinetic energy which is dependent on the temperature. Using the ideal gas equation, the calculated molecular formula of gas is
Want to see more full solutions like this?
Chapter 5 Solutions
Chemistry for Engineering Students
- You have a 550.-mL tank of gas with a pressure of 1.56 atm at 24 C. You thought the gas was pure carbon monoxide gas, CO, but you later found it was contaminated by small quantities of gaseous CO2 and O2. Analysis shows that the tank pressure is 1.34 atm (at 24 C) if the CO2 is removed. Another experiment shows that 0.0870 g of O2 can be removed chemically. What are the masses of CO and CO2 in the tank, and what is the partial pressure of each of the three gases at 25 C?arrow_forwardA chemist weighed out 5.14 g of a mixture containing unknown amounts of BaO(s) and CaO(s) and placed the sample in a 1.50-L flask containing CO2(g) at 30.0C and 750. torr. After the reaction to form BaCO3(s) and CaCO3(s) was completed, the pressure of CO2(g) remaining was 230. torr. Calculate the mass percentages of CaO(s) and BaO(s) in the mixture.arrow_forwardButyl mercaptan, C4H9SH, has a very bad odor and is among the compounds added to natural gas to help detect a leak of otherwise odorless natural gas. In an experiment, you burn 95.0 mg of C4H9SH and collect the product gases (SO2, CO2, and H2O) in a 5.25-L flask at 25 C. What is the total gas pressure in the flask, and what is the partial pressure of each of the product gases?arrow_forward
- 97 Homes in rural areas where natural gas service is not available often rely on propane to fuel kitchen ranges. The propane is stored as a liquid, and the gas to be burned is produced as the liquid evaporates. Suppose an architect has hired you to consult on the choice of a propane tank for such a new home. The propane gas consumed in 1.0 hour by a typical range burner at high power would occupy roughly 165 L at 25°C and 1.0 atm, and the range chosen by the client will have six burners. If the tank under consideration holds 500.0 gallons of liquid propane, what is the minimum number of hours it would take for the range to consume an entire tankful of propane? The density of liquid propane is 0.5077 kg/L.arrow_forwardYou have a gas, one of the three known phosphorus-fluorine compounds (PF3, PF3, and P2F4). To find out which, you have decided to measure its molar mass. (a) First, yon determine that the density of the gas is 5.60 g/L at a pressure of 0.971 atm and a temperature of 18.2 C. Calculate the molar mass and identify the compound. (b) To check the results from part (a), you decide to measure the molar mass based on the relative rales of effusion of the unknown gas and CO2. You find that CO2 effuses at a rate of 0.050 mol/min, whereas the unknown phosphorus fluoride effuses at a rate of 0.028 mol/min. Calculate the molar mass of the unknown gas based on these results.arrow_forwardLiquid oxygen was first prepared by heating potassium chlorate, KClO3, in a closed vessel to obtain oxygen at high pressure. The oxygen was cooled until it liquefied. 2KClO3(s)2KCl(s)+3O2(g) If 171 g of potassium chlorate reacts in a 2.70-L vessel, which was initially evacuated, what pressure of oxygen will be attained when the temperature is finally cooled to 25C? Use the preceding chemical equation and ignore the volume of solid product.arrow_forward
- Nitrogen trifluoride is prepared by the reaction of ammonia and fluorine. 4 NH3(g) + 3 F2(g) 3 NH4F(s) + NF3(g) If you mix NH3 with F2 in the correct stoichiometric ratio, and if the total pressure of the mixture is 120 mm Hg, what are the partial pressures of NH3 and F2? When the reactants have been completely consumed, what is the total pressure in the flask? (Assume T is constant.)arrow_forwardMany nitrate salts can be decomposed by heating. For example, blue, anhydrous copper(II) nitrate produces the gases nitrogen dioxide and oxygen when heated. In the laboratory, you find that a sample of this salt produced a 0.195-g mixture of gaseous NO2 and O2 with a total pressure of 725 mm Hg at 35 C in a 125-mL flask (and black, solid CuO was left as a residue). What is the average molar mass of the gas mixture? What are the mole fractions of NO2 and O2 in the mixture? What amount of each gas b in the mixture? Do these amounts reflect the relative amounts of NO2 and O2 expected based on the balanced equation? Is it possible that the fact that some NO2 molecules combine to give N2O4 plays a role? Heating copper(II) nitrate produces nitrogen dioxide and oxygen gas and leaves a residue of copper(ll) oxide.arrow_forward105 The decomposition of mercury(II) thiocyanate produces an odd brown snake-like mass that is so unusual the process was once used in fireworks displays. There are actually several reactions that take place when the solid Hg(SCN)2 is ignited: 2Hg(SCN)2(s)2HgS(s)+CS2(s)+C3N4(s)CS2(s)+3O2(g)CO2(g)+2SO2(g)2C3N4(s)3(CN)2(g)+N2(g)HgS(s)+O2(g)Hg(l)+SO2(g) A 42.4-g sample of Hg(SCN)2 is placed into a 2.4-L vessel at 21°C. The vessel also contains air at a pressure of 758 torr. The container is sealed and the mixture is ignited, causing the reaction sequence above to occur. Once the reaction is complete, the container is cooled back to the original temperature of 21°C. (a) Without doing numerical calculations, predict whether the final pressure in the vessel will be greater than, less than, or equal to the initial pressure. Explain your answer. (b) Calculate the final pressure and compare your result with your prediction. (Assume that the mole fraction of O2 in air is 0.21.)arrow_forward
- The hydrocarbon octane (C8H18) bums to give CO2 and water vapor: 2 C8H18(g) + 25 O2(g) 16 CO2(g) + 18 H2O(g) If a 0.048-g sample of octane burns completely in O2, what will be the pressure of water vapor in a 4.75-L flask at 30.0 C? If the O2 gas needed for complete combustion was contained in a 4.75-L flask at 22 C, what would its pressure be?arrow_forwardDescribe the factors responsible for the deviation of the behavior of real gases from that of an ideal gas.arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning