Concept explainers
Consider the three connected objects shown in Figure P5.88. Assume first that the inclined plane is friction-less and that the system is in equilibrium. In terms of m, g, and θ, find (a) the mass M and (b) the tensions T, and T2. Now assume that the value of Af is double the value found in part (a). Find (c) the acceleration of each object and (d) the tensions T1 and T2. Next, assume that the coefficient of static friction between m and 2m and the inclined plane is m, and that the system is in equilibrium. Find (e) the maximum value of M and (0 the minimum value of M. (g) Compare the values of T2 when M has its minimum and maximum values.
(a)
![Check Mark](/static/check-mark.png)
The expression for the mass of
Answer to Problem 5.88AP
The expression for the mass
Explanation of Solution
The free body diagram of the three connected objects is shown in Figure below,
Figure (1)
From Figure (1), the equilibrium forces acts on the object of mass
Here,
From the Newton’s second law of motion, the net force on the object of mass
Here,
Substitute
From Figure (1), the equilibrium forces act on the object of mass
Here,
From the Newton’s second law of motion, the net force on the object of mass
Substitute
Add the equation (1) with equation (2).
From Figure (1), the equilibrium forces act on the object of mass
Here,
Substitute
From the Newton’s second law of motion, the net force on the object of mass
Substitute
The system is in equilibrium so value of the acceleration is zero.
Substitute
Conclusion:
Therefore, the expression for the mass
(b)
![Check Mark](/static/check-mark.png)
The expressions for tensions
Answer to Problem 5.88AP
The expression for the tension
Explanation of Solution
From part (a), the expression for the mass of
From part (a), the equilibrium forces act on the object is,
The system is in equilibrium, the value of acceleration is zero so the net force acts on the system is also zero.
Substitute
Substitute
Thus, the expression for the tension
From part (a), the equation (2) is,
Substitute
Substitute
Thus, the expression for the tension
Conclusion:
Therefore, the expression for the tension
(c)
![Check Mark](/static/check-mark.png)
The acceleration of each object.
Answer to Problem 5.88AP
The acceleration of each object is
Explanation of Solution
Given info: The value of mass
From part (a), the expression for the mass when it is double represents as,
From part (a), the equation (1) is,
Rearrange the above equation.
From part (a), the equation (2) is,
Rearrange the above equation.
Substitute
From Figure (1), the equilibrium forces act on the object of mass
Substitute
Subtract the equation (3) from equation (4).
Conclusion:
Therefore, the acceleration of each object is
(d)
![Check Mark](/static/check-mark.png)
The expressions for tensions
Answer to Problem 5.88AP
The expression for the tension
Explanation of Solution
From part (c), the expression for the acceleration is,
From part (c), the equation for tension
Substitute
Thus, the expression for tension
From part (c), the equation (3) is,
Substitute
Thus, the expression for tension
Conclusion:
Therefore, the expression for the tension
(e)
![Check Mark](/static/check-mark.png)
The maximum value of
Answer to Problem 5.88AP
The maximum value of
Explanation of Solution
Given info: The coefficient of static friction between mass
The static friction forces on the masses
Figure (2)
From the Figure (2), the normal force on the object of mass
The expression for the static friction force on the object of mass
Here,
Substitute
From the Figure (1), the equilibrium forces acts on the object of mass
Substitute
Rearrange the above equation for
Substitute
From the Figure (2), the normal force on the object of mass
Substitute
From the Figure (1), the equilibrium forces acts on the object of mass
Substitute
Add equation (4) with the above equation.
Substitute
The equilibrium forces on the block of mass
Substitute
Conclusion:
Therefore, the maximum value of
(f)
![Check Mark](/static/check-mark.png)
The minimum value of
Answer to Problem 5.88AP
The minimum value of
Explanation of Solution
From part (e), the expression of tension
The equilibrium forces acts on block for minimum mass of
Substitute
Conclusion:
Therefore, the minimum value of
(g)
![Check Mark](/static/check-mark.png)
The difference between the tension
Answer to Problem 5.88AP
The difference between the tension for maximum and minimum mass is
Explanation of Solution
From part (e), the expression for maximum mass is,
From part (f), the expression for the minimum mass is,
From part (e), the expression for the tension for maximum mass is,
From part (f), the expression for the tension for maximum mass is,
Compare both the above equation.
Substitute
Conclusion:
Therefore, the difference between the tension for maximum and minimum mass is
Want to see more full solutions like this?
Chapter 5 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- Which of the following best describes how to calculate the average acceleration of any object? Average acceleration is always halfway between the initial acceleration of an object and its final acceleration. Average acceleration is always equal to the change in velocity of an object divided by the time interval. Average acceleration is always equal to the displacement of an object divided by the time interval. Average acceleration is always equal to the change in speed of an object divided by the time interval.arrow_forwardThe figure shows the velocity versus time graph for a car driving on a straight road. Which of the following best describes the acceleration of the car? v (m/s) t(s) The acceleration of the car is negative and decreasing. The acceleration of the car is constant. The acceleration of the car is positive and increasing. The acceleration of the car is positive and decreasing. The acceleration of the car is negative and increasing.arrow_forwardWhich figure could represent the velocity versus time graph of a motorcycle whose speed is increasing? v (m/s) v (m/s) t(s) t(s)arrow_forward
- Unlike speed, velocity is a the statement? Poisition. Direction. Vector. Scalar. quantity. Which one of the following completesarrow_forwardNo chatgpt pls will upvote Already got wrong chatgpt answerarrow_forward3.63 • Leaping the River II. A physics professor did daredevil stunts in his spare time. His last stunt was an attempt to jump across a river on a motorcycle (Fig. P3.63). The takeoff ramp was inclined at 53.0°, the river was 40.0 m wide, and the far bank was 15.0 m lower than the top of the ramp. The river itself was 100 m below the ramp. Ignore air resistance. (a) What should his speed have been at the top of the ramp to have just made it to the edge of the far bank? (b) If his speed was only half the value found in part (a), where did he land? Figure P3.63 53.0° 100 m 40.0 m→ 15.0 marrow_forward
- Please solve and answer the question correctly please. Thank you!!arrow_forwardYou throw a small rock straight up from the edge of a highway bridge that crosses a river. The rock passes you on its way down, 5.00 s after it was thrown. What is the speed of the rock just before it reaches the water 25.0 m below the point where the rock left your hand? Ignore air resistance.arrow_forwardHelp me make a visualize experimental setup using a word document. For the theory below.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305116399/9781305116399_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133939146/9781133939146_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780534408961/9780534408961_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168277/9781938168277_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337553292/9781337553292_smallCoverImage.gif)