A 1.00-kg glider on a horizontal air track is pulled by a string at an angle θ . The taut string runs over a pulley and is attached to a hanging object of mass 0.500 kg as shown in Figure P5.40. (a) Show that the speed v x of the glider and the speed v y of the hanging object are related by v x = uv y , where u = z ( z 2 − h 0 2 ) −1/2 . (b) The glider is released from rest. Show that at that instant the acceleration a x of the glider and the acceleration a y of the hanging object are related by a x = ua y . (c) Find the tension in the string at the instant the glider is released for h 0 = 80.0 cm and θ = 30.0°. Figure P5.40
A 1.00-kg glider on a horizontal air track is pulled by a string at an angle θ . The taut string runs over a pulley and is attached to a hanging object of mass 0.500 kg as shown in Figure P5.40. (a) Show that the speed v x of the glider and the speed v y of the hanging object are related by v x = uv y , where u = z ( z 2 − h 0 2 ) −1/2 . (b) The glider is released from rest. Show that at that instant the acceleration a x of the glider and the acceleration a y of the hanging object are related by a x = ua y . (c) Find the tension in the string at the instant the glider is released for h 0 = 80.0 cm and θ = 30.0°. Figure P5.40
A 1.00-kg glider on a horizontal air track is pulled by a string at an angle θ. The taut string runs over a pulley and is attached to a hanging object of mass 0.500 kg as shown in Figure P5.40. (a) Show that the speed vx of the glider and the speed vy of the hanging object are related by vx = uvy, where u = z(z2 − h02)−1/2. (b) The glider is released from rest. Show that at that instant the acceleration ax of the glider and the acceleration ay of the hanging object are related by ax = uay. (c) Find the tension in the string at the instant the glider is released for h0 = 80.0 cm and θ = 30.0°.
Figure P5.40
(a)
Expert Solution
To determine
The relation between the speed of the glider and the speed of the hanging object.
Answer to Problem 5.76AP
The relation between the speed of the glider and the speed of the hanging object is vx=uvy where u=z(z2−h02)−(12).
Explanation of Solution
The mass of the glider is 1.00kg, the angle between the string and horizontal is θ, the mass of the hanging object is 0.500kg.
The free body diagram of the given case is as shown below.
Figure (1)
Form the above figure (1).
Write the expression for the length of the string using Pythagorean Theorem,
z2=x2+(h0)2
Here, z is the length of string, x is the distance of the glider on the ruler scale and h0 is the string length that is holding the hanging object.
Rearrange the above equation for x.
x=(z2−(h0)2)12
Write the expression for the speed of the glider
vx=dxdt
Here, vx is the speed of the glider.
Substitute (z2−(h0)2)12 for x in the above equation.
vx=ddt((z2−(h0)2)12)=12(z2−(h0)2)−(12)2zdzdt (I)
The term dzdt in the above expression is the rate of the string passing over the pulley.
Write the expression for the speed of the hanging object.
vy=dzdt
Here, vy is the speed of the hanging object.
Substitute vy for dzdt in the equation (1).
vx=12(z2−(h0)2)−(12)2z(vy)=z(z2−(h0)2)−(12)(vy)
Substitute u for z(z2−(h0)2)−(12) in the above equation.
vx=u(vy) (II)
Conclusion:
Therefore, the relation between the speed of the glider and the speed of the hanging object is vx=uvy where u=z(z2−h02)−(12).
(b)
Expert Solution
To determine
The relation between the acceleration of the glider and the speed of the hanging object.
Answer to Problem 5.76AP
The relation between the acceleration of the glider and the speed of the hanging object is ax=uay.
Explanation of Solution
From equation (2), the relation of vx and vy is given as,
vx=u(vy)
Write the expression for the acceleration of the glider
ax=ddtvx
Substitute u(vy) for vx in the above equation.
ax=ddt[u(vy)]=uddt(vy)+vydudt
The initial velocity of the hanging object is zero.
Substitute 0 for vy and ay for ddt(vy) in the above equation.
ax=uay
Here, ay is the acceleration of the hanging object.
Conclusion:
Therefore, the relation between the acceleration of the glider and the speed of the hanging object is ax=uay.
(c)
Expert Solution
To determine
The tension of the string.
Answer to Problem 5.76AP
The tension of the string is 3.56N.
Explanation of Solution
From the free body diagram in figure (1) the net direction in x direction
z=h0sinθ
From part (a) the value of u
u=z(z2−h02)−(12)
Substitute h0sinθ for z in the above equation.
u=h0sinθ((h0sinθ)2−h02)−(12)
Substitute 30.0° for θ and 80.0cm for h0 in the above equation.
ROTATIONAL DYNAMICS
Question 01
A solid circular cylinder and a solid spherical ball of the same mass and radius are rolling
together down the same inclined. Calculate the ratio of their kinetic energy. Assume pure
rolling motion Question 02
A sphere and cylinder of the same mass and radius start from ret at the same point and more
down the same plane inclined at 30° to the horizontal
Which body gets the bottom first and what is its acceleration
b) What angle of inclination of the plane is needed to give the slower body the same
acceleration
Question 03
i)
Define the angular velocity of a rotating body and give its SI unit
A car wheel has its angular velocity changing from 2rads to 30 rads
seconds. If the radius of the wheel is 400mm. calculate
ii)
The angular acceleration
iii)
The tangential linear acceleration of a point on the rim of the wheel
Question 04
in 20
Question B3
Consider the following FLRW spacetime:
t2
ds² = -dt² +
(dx²
+ dy²+ dz²),
t2
where t is a constant.
a)
State whether this universe is spatially open, closed or flat.
[2 marks]
b) Determine the Hubble factor H(t), and represent it in a (roughly drawn) plot as a function
of time t, starting at t = 0.
[3 marks]
c) Taking galaxy A to be located at (x, y, z) = (0,0,0), determine the proper distance to galaxy
B located at (x, y, z) = (L, 0, 0). Determine the recessional velocity of galaxy B with respect
to galaxy A.
d) The Friedmann equations are
2
k
8πG
а
4πG
+
a²
(p+3p).
3
a
3
[5 marks]
Use these equations to determine the energy density p(t) and the pressure p(t) for the
FLRW spacetime specified at the top of the page.
[5 marks]
e) Given the result of question B3.d, state whether the FLRW universe in question is (i)
radiation-dominated, (ii) matter-dominated, (iii) cosmological-constant-dominated, or (iv)
none of the previous. Justify your answer.
f)
[5 marks]
A conformally…
SECTION B
Answer ONLY TWO questions in Section B
[Expect to use one single-sided A4 page for each Section-B sub question.]
Question B1
Consider the line element
where w is a constant.
ds²=-dt²+e2wt dx²,
a) Determine the components of the metric and of the inverse metric.
[2 marks]
b) Determine the Christoffel symbols. [See the Appendix of this document.]
[10 marks]
c)
Write down the geodesic equations.
[5 marks]
d) Show that e2wt it is a constant of geodesic motion.
[4 marks]
e)
Solve the geodesic equations for null geodesics.
[4 marks]
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.