CHEMISTRY: MOLECULAR...(LL) W/ALEKS
CHEMISTRY: MOLECULAR...(LL) W/ALEKS
9th Edition
ISBN: 9781265141875
Author: SILBERBERG
Publisher: MCG CUSTOM
Question
Book Icon
Chapter 5, Problem 5.74P

(a)

Interpretation Introduction

Interpretation:

Three different flasks that contain H2, He, and CH4 gas are to be ranked in order of pressure.

Concept introduction:

The ideal gas equation can be expressed as follows:

  PV=nRT        (1)

Here, P is the pressure, V is the volume, T is the temperature, n is the mole of the gas and R is the gas constant.

The expression to calculate the moles of gas is as follows:

  Moles of gas=Mass of gasMolar mass of gas        (2)

(b)

Interpretation Introduction

Interpretation:

Three different flasks that contain H2, He, and CH4 gas are to be ranked in order of average kinetic energy.

Concept introduction:

The expression to calculate the average kinetic energy of gases is as follows:

  Average kinectic energy of gases=(32)(RT)

Here, T is the temperature and R is the gas constant.

The expression to calculate the kinetic energy is as follows:

  Ek=(12)(mass)(speed)2

The kinetic energy is directly proportional to the temperature.

(c)

Interpretation Introduction

Interpretation:

Three different flasks that contain H2, He, and CH4 gas are to be ranked in order of diffusion rate.

Concept introduction:

Effusion is explained as the movement of the gas molecule through a pinhole.

Diffusion can be explained as the mixing of one gas molecule with another gas molecule by random motion.

According to Graham’s law of effusion, the rate of effusion of a gas is inversely proportional to the square root of its molar mass.

The mathematical expression of Graham’s law of effusion is as follows:

  Rate of ARate of B=urms of Aurms of B=MBMA=time Btime A        (3)

Here,

MB is the molar mass of gas B

MA is the molar mass of gas A.

(d)

Interpretation Introduction

Interpretation:

Three different flasks that contain H2, He, and CH4 gas are to be ranked in order of total kinetic energy.

Concept introduction:

The expression to calculate the root-mean-square speed is as follows:

  urms=3RTM

Here, M is the molar mass, T is the temperature and R is the gas constant.

The expression to calculate the average kinetic energy of gases is as follows:

  Average kinectic energy of gases=(32)(RT)

Here, T is the temperature and R is the gas constant.

The expression to calculate the kinetic energy is as follows:

  Ek=(12)(mass)(speed)2

The kinetic energy is directly proportional to the temperature.

(e)

Interpretation Introduction

Interpretation:

Three different flasks that contain H2, He, and CH4 gas are to be ranked in order of density.

Concept introduction:

The expression to calculate the density of the air is as follows,

  d=PMRT

Here, P is the pressure, M is the molecular mass, T is the temperature, d is the density of the air and R is the gas constant.

Rate of diffusion is inversely proportional to the square root of the density of the gas.

The expression to calculate the density of a gas is as follows:

  Density of the gas=Mass of gasVolume of gas        (4)

(f)

Interpretation Introduction

Interpretation:

Three different flasks that contain H2, He, and CH4 gas are to be ranked in order of collision frequency.

Concept introduction:

The mean free path can be defined as the average distance traveled by the gas molecule during a collision. There are many factors that affect the mean free path such as pressure, temperature, density and radius of the molecule.

The collision frequency is defined as the ratio of the most probable speed to the mean free path.

Blurred answer

Chapter 5 Solutions

CHEMISTRY: MOLECULAR...(LL) W/ALEKS

Ch. 5.3 - Prob. 5.6AFPCh. 5.3 - A blimp is filled with 3950 kg of helium at 731...Ch. 5.3 - Prob. 5.7AFPCh. 5.3 - Prob. 5.7BFPCh. 5.4 - Prob. 5.8AFPCh. 5.4 - Prob. 5.8BFPCh. 5.4 - Prob. 5.9AFPCh. 5.4 - Prob. 5.9BFPCh. 5.4 - To prevent air from interacting with highly...Ch. 5.4 - Prob. 5.10BFPCh. 5.4 - Prob. 5.11AFPCh. 5.4 - Prob. 5.11BFPCh. 5.4 - Prob. 5.12AFPCh. 5.4 - Prob. 5.12BFPCh. 5.4 - Ammonia and hydrogen chloride gases react to form...Ch. 5.4 - Prob. 5.13BFPCh. 5.5 - If it takes 1.25 min for 0.010 mol of He to...Ch. 5.5 - If 7.23 mL of an unknown gas effuses in the same...Ch. 5.5 - Prob. 5.1PCh. 5.5 - Prob. 5.2PCh. 5.5 - Prob. 5.3PCh. 5.5 - Prob. 5.4PCh. 5 - Prob. 5.1PCh. 5 - Prob. 5.2PCh. 5 - Prob. 5.3PCh. 5 - Prob. 5.4PCh. 5 - Prob. 5.5PCh. 5 - Prob. 5.6PCh. 5 - Prob. 5.7PCh. 5 - Prob. 5.8PCh. 5 - Prob. 5.9PCh. 5 - In Figure P5.10, what is the pressure of the gas...Ch. 5 - Prob. 5.11PCh. 5 - Prob. 5.12PCh. 5 - Prob. 5.13PCh. 5 - Prob. 5.14PCh. 5 - The gravitational force exerted by an object is...Ch. 5 - Prob. 5.16PCh. 5 - Prob. 5.17PCh. 5 - Prob. 5.18PCh. 5 - Prob. 5.19PCh. 5 - What is the effect of the following on volume of 1...Ch. 5 - Prob. 5.21PCh. 5 - Prob. 5.22PCh. 5 - What is the effect of the following on the volume...Ch. 5 - Prob. 5.24PCh. 5 - Prob. 5.25PCh. 5 - Prob. 5.26PCh. 5 - Prob. 5.27PCh. 5 - Prob. 5.28PCh. 5 - Prob. 5.29PCh. 5 - Prob. 5.30PCh. 5 - Prob. 5.31PCh. 5 - Prob. 5.32PCh. 5 - Prob. 5.33PCh. 5 - Prob. 5.34PCh. 5 - Prob. 5.35PCh. 5 - You have 357 mL of chlorine trifluoride gas at 699...Ch. 5 - Prob. 5.37PCh. 5 - Prob. 5.38PCh. 5 - Prob. 5.39PCh. 5 - Prob. 5.40PCh. 5 - Prob. 5.41PCh. 5 - Prob. 5.42PCh. 5 - Prob. 5.43PCh. 5 - Prob. 5.44PCh. 5 - Prob. 5.45PCh. 5 - Prob. 5.46PCh. 5 - Prob. 5.47PCh. 5 - Prob. 5.48PCh. 5 - Prob. 5.49PCh. 5 - Prob. 5.50PCh. 5 - After 0.600 L of Ar at 1.20 atm and 227°C is mixed...Ch. 5 - A 355-mL container holds 0.146 g of Ne and an...Ch. 5 - Prob. 5.53PCh. 5 - Prob. 5.54PCh. 5 - Prob. 5.55PCh. 5 - Prob. 5.56PCh. 5 - Prob. 5.57PCh. 5 - How many liters of hydrogen gas are collected over...Ch. 5 - Prob. 5.59PCh. 5 - Prob. 5.60PCh. 5 - Prob. 5.61PCh. 5 - Prob. 5.62PCh. 5 - Prob. 5.63PCh. 5 - Prob. 5.64PCh. 5 - Freon-12 (CF2C12), widely used as a refrigerant...Ch. 5 - Prob. 5.66PCh. 5 - Prob. 5.67PCh. 5 - Prob. 5.68PCh. 5 - Prob. 5.69PCh. 5 - Prob. 5.70PCh. 5 - Prob. 5.71PCh. 5 - Prob. 5.72PCh. 5 - Prob. 5.73PCh. 5 - Prob. 5.74PCh. 5 - Prob. 5.75PCh. 5 - Prob. 5.76PCh. 5 - Prob. 5.77PCh. 5 - Prob. 5.78PCh. 5 - Prob. 5.79PCh. 5 - Prob. 5.80PCh. 5 - Prob. 5.81PCh. 5 - Prob. 5.82PCh. 5 - Prob. 5.83PCh. 5 - Do interparticle attractions cause negative or...Ch. 5 - Prob. 5.85PCh. 5 - Prob. 5.86PCh. 5 - Prob. 5.87PCh. 5 - Prob. 5.88PCh. 5 - Prob. 5.89PCh. 5 - Prob. 5.90PCh. 5 - Prob. 5.91PCh. 5 - Prob. 5.92PCh. 5 - Prob. 5.93PCh. 5 - Prob. 5.94PCh. 5 - Prob. 5.95PCh. 5 - Prob. 5.96PCh. 5 - Prob. 5.97PCh. 5 - Prob. 5.98PCh. 5 - Prob. 5.99PCh. 5 - Prob. 5.100PCh. 5 - Prob. 5.101PCh. 5 - Prob. 5.102PCh. 5 - Prob. 5.103PCh. 5 - Prob. 5.104PCh. 5 - Prob. 5.105PCh. 5 - An atmospheric chemist studying the pollutant SO2...Ch. 5 - The thermal decomposition of ethylene occurs...Ch. 5 - Prob. 5.108PCh. 5 - Prob. 5.109PCh. 5 - Prob. 5.110PCh. 5 - Prob. 5.111PCh. 5 - Prob. 5.112PCh. 5 - Containers A, B and C are attached by closed...Ch. 5 - Prob. 5.114PCh. 5 - Prob. 5.115PCh. 5 - Prob. 5.116PCh. 5 - Prob. 5.117PCh. 5 - Prob. 5.118PCh. 5 - Prob. 5.119PCh. 5 - Prob. 5.120PCh. 5 - Prob. 5.121PCh. 5 - Prob. 5.122PCh. 5 - Prob. 5.123PCh. 5 - Prob. 5.124PCh. 5 - Prob. 5.125PCh. 5 - For each of the following, which shows the greater...Ch. 5 - Prob. 5.127PCh. 5 - Prob. 5.128PCh. 5 - Prob. 5.129PCh. 5 - Prob. 5.130PCh. 5 - Prob. 5.131PCh. 5 - Gases such as CO are gradually oxidized in the...Ch. 5 - Aqueous sulfurous acid (H2SO3) was made by...Ch. 5 - Prob. 5.134PCh. 5 - Prob. 5.135PCh. 5 - The lunar surface reaches 370 K at midday. The...Ch. 5 - Prob. 5.137PCh. 5 - Popcorn pops because the horny endosperm, a...Ch. 5 - Prob. 5.139PCh. 5 - Prob. 5.140PCh. 5 - Prob. 5.141PCh. 5 - Prob. 5.142PCh. 5 - Prob. 5.143PCh. 5 - Prob. 5.144PCh. 5 - Prob. 5.145PCh. 5 - Prob. 5.146PCh. 5 - Prob. 5.147PCh. 5 - Prob. 5.148PCh. 5 - An equimolar mixture of Ne and Xe is accidentally...Ch. 5 - Prob. 5.150PCh. 5 - A slight deviation from ideal behavior exists even...Ch. 5 - In preparation for a combustion demonstration, a...Ch. 5 - Prob. 5.153PCh. 5 - A truck tire has a volume of 218 L and is filled...Ch. 5 - Allotropes are different molecular forms of an...Ch. 5 - Prob. 5.156PCh. 5 - Prob. 5.157P
Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY