FUND OF ENG THERMODYN(LLF)+WILEYPLUS
9th Edition
ISBN: 9781119391777
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
A cyclic machine, shown in Fig. P5.56, receives 300 kJ from a 1000-K energy reservoir. It rejects 120 kJ to a 400-K energy reservoir, and the cycle produces 180 kJ of
work as output. Is this cycle reversible, irreversible, or impossible?
TH= 1000 K
JL,
QH
= 300 kJ
Суclic
machine
W = 180 kJ
QL = 120 kJ
T = 400 K
%3D
Example 5.23. When a closed system executes a certain non-flow process, the work and heat
interactions per degree rise in temperature at each temperature attained are given by
SW
= (4 0.08 T) kJ/kg and
8Q
= 1.00 kJ/K
dT
dT
Make calculations for the increase or decrease in the internal energy of the system if it is
to operate between the temperature limits of 200 °C and 400 °C.
5.45 WP As shown in Fig. P5.45, an air conditioner operating at
steady state maintains a dwelling at 70°F on a day when the outside
temperature is 90°F. If the rate of heat transfer into the dwelling
through the walls and roof is 30,000 Btu/h, might a net power input to the
air conditioner compressor of 3 hp be sufficient? If yes, determine the
coefficient of performance. If no, determine the minimum theoretical
power input, in hp.
Knowledge Booster
Similar questions
- Need help solving this problem. Please provide clear and concise steps in neat handwriting.arrow_forward* \Q1 The refrigerator shown in Fig. P5.35 operates at steady state with a coefficient of performance of 4.5 and a power in- put of 0.8 kW. Energy is rejected from the refrigerator to the surroundings at 20°C by heat transfer from metal coils whose average surface temperature is 28°C. Determine (a) the rate energy is rejected, in kW. (b) the lowest theoretical temperature inside the refrigerator, in К. (c) the maximum theoretical power, in kW, that could be de- veloped by a power cycle operating between the coils and the surroundings. Would you recommend making use of this opportunity for developing power? Refrigerator B = 4.5 Surroundings, 20°C Coils, 28°C S. 0.8 kW إضافة ملفarrow_forward5.1arrow_forward
- Exercise 5.50 The refrigerator shown in Fig operates at Refrigerator B = 4.5 steady state with a coefficient of performance of 4.5 and a power input of 0.8 kW. Energy is rejected from the refrigerator to the surroundings at 20°C by heat transfer from metal coils whose average surface temperature is 28°C. Surroundings, 20°C - Coils, 28°C Determine (a) the rate energy that is rejected, in kW. (b) the lowest theoretical temperature inside the refrigerator, in K. (c) the maximum theoretical power, in kW, that could be developed by a power cycle operating between the coils and the surroundings. Would you recommend making use of this opportunity for developing power? 0.8 kW 49 Chaplerarrow_forwardChapter 5 no. 4arrow_forwardAt steady state, a refrigeration cycle operates between hot and cold reservoirs at 300K and 275K respectively. The refrigerator removes 600 kW of heat from the cold reservoir. If the cycle's coefficient of performance is 4, determine the power input required in kW. Compare this with the minimum theoretical power required in kW.arrow_forward
- ?arrow_forwardA heat pump is used to maintain the interior of a building at 21 °C. At steady state, the heat pump receives energy by heat transfer from well water at 9°C and discharges energy by heat transfer to the building at a rate of 120000 kJ/h. Over a period of 14 days, an electric meter records that 1490 kW-h of electricity is provided to the heat pump. 1. Draw a schematic diagram(s)arrow_forwardThree sub steps of a thermodynamic cycle are employed in order to change the state of a gas from 1 bar, 1.5 cubic meter and internal energy of 512 kJ. The processes are: 1st step: Compression at constant PV to a pressure of 2 bar and internal energy of 690 kJ. 2nd step: A process where work transferred is zero and heat transferred is - 150 kJ. 3rd step: A process where work transferred is -50 kJ. without KE and PE changes, determine: a. heat transferred during 1st step (kJ) b. heat transferred during 3rd step (kJ)arrow_forward
- An automobile industry using piston cylinder arrangement for their operation it under goes a thermodynamic cycle which includes three processes with an initial state where pressure is 1.5 bar, volume is 2 m3 and internal energy equals to 480 kJ. The processes are as follows: 1)first stage to second stage: Compression with pV equals to constant to p2 is equals to 2 bar, U2 equals to 720 kJ 2)Second stage to third stage: work is equals to zero, and Q2-3 = - 150 kJ 3)Stage third to one: work is equals to 75 kJ. Neglecting kinetic energy and potential energy changes, find the heat transfer Q1-2 and Q3-1.arrow_forwardOne kg of fluid expands reversibly according to a linear law from 4.2 bar to 1.4 bar. The initial and final volume are 0.004 and 0.02 m² respectively. The fluid then cooled reversibly at constant pressure, and finally compressed reversibly according to a law PV=C back to initial condition of 4.2 bar and 0.004 m². Calculate the work done for each process, the net work done and sketch the cycle on the P-V diagram. (4480, -1120, -1845 &1515 N-m)arrow_forwardFive kg of steam is contained within a piston- cylinder assembly. It undergoes an expansion from state 1, where the specific internal energy is u_1=2709.9 kJ/kg to state 2, where u_2=2659.6 kJ/kg. During the process, heat is transferred to the steam with a magnitude of 80 kJ. Also, a paddle Ww=-18.5 kJ wheel transfers energy to the steam by work in the amount of 18.5 kJ. There is no significant change in the kinetic or potential energy of the steam. Determine the energy transfer by work from the steam to the piston during the process, in kJ. Indicate whether the work is done on or done by the system. Q=+80 kJ 5 kg of steam W u₁ = 2709.9 kJ/kg U₂ = 2659.6 kJ/kg piston =?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY