
Concept explainers
(a)
Interpretation:
The chemical names of given compounds has to be derived.
Concept introduction:
- Rules for naming compounds:
1. Cation should come first followed by anion.
2. Provide a roman numeral for cation to mention oxidation number of it.
3. For anion, give root name of anion + ide.
- Rules for naming polyatomic ions contains oxygen
Per + root name of element + ate | Ion have one more oxygen than expected | Eg: perphosphate |
root name of element + ate | Ion has most common number of oxygen | Eg: phosphate |
root name of element + ite | Ion have one less oxygen than expected | Eg: phosphite |
Hypo + root name of element + ite | Ion have two less oxygen than expected | Eg: hypophosphite |
- Rules for naming acids that contains oxygen
1. Identify the name of polyatomic ion.
2. Convert “ate” to “ic” and “ite” to “ous”.
3. Finally the word acid should be added.
- Rules for naming acids that has no oxygen
-
- 1. Add prefix “hydro” to name of anion and “ic” to its ending.
-
- 2. Finally the word acid should be added.
To derive: the chemical name of
(a)

Answer to Problem 5.60QP
The chemical name is tripotassium phosphate.
Explanation of Solution
(b)
Interpretation:
The chemical names of given compounds has to be derived.
Concept introduction:
- Rules for naming compounds:
1. Cation should come first followed by anion.
2. Provide a roman numeral for cation to mention oxidation number of it.
3. For anion, give root name of anion + ide.
- Rules for naming polyatomic ions contains oxygen
Per + root name of element + ate | Ion have one more oxygen than expected | Eg: perphosphate |
root name of element + ate | Ion has most common number of oxygen | Eg: phosphate |
root name of element + ite | Ion have one less oxygen than expected | Eg: phosphite |
Hypo + root name of element + ite | Ion have two less oxygen than expected | Eg: hypophosphite |
- Rules for naming acids that contains oxygen
1. Identify the name of polyatomic ion.
2. Convert “ate” to “ic” and “ite” to “ous”.
3. Finally the word acid should be added.
- Rules for naming acids that has no oxygen
-
- 3. Add prefix “hydro” to name of anion and “ic” to its ending.
-
- 4. Finally the word acid should be added.
To derive: the chemical name of
(b)

Answer to Problem 5.60QP
The chemical name is cobalt(II) oxalate.
Explanation of Solution
(c)
Interpretation:
The chemical names of given compounds has to be derived.
Concept introduction:
- Rules for naming compounds:
1. Cation should come first followed by anion.
2. Provide a roman numeral for cation to mention oxidation number of it.
3. For anion, give root name of anion + ide.
- Rules for naming polyatomic ions contains oxygen
Per + root name of element + ate | Ion have one more oxygen than expected | Eg: perphosphate |
root name of element + ate | Ion has most common number of oxygen | Eg: phosphate |
root name of element + ite | Ion have one less oxygen than expected | Eg: phosphite |
Hypo + root name of element + ite | Ion have two less oxygen than expected | Eg: hypophosphite |
- Rules for naming acids that contains oxygen
1. Identify the name of polyatomic ion.
2. Convert “ate” to “ic” and “ite” to “ous”.
3. Finally the word acid should be added.
- Rules for naming acids that has no oxygen
-
- 5. Add prefix “hydro” to name of anion and “ic” to its ending.
-
- 6. Finally the word acid should be added.
To derive: the chemical name of
(c)

Answer to Problem 5.60QP
The chemical name is Lithium carbonate.
Explanation of Solution
(d)
Interpretation:
The chemical names of given compounds has to be derived.
Concept introduction:
- Rules for naming compounds:
1. Cation should come first followed by anion.
2. Provide a roman numeral for cation to mention oxidation number of it.
3. For anion, give root name of anion + ide.
- Rules for naming polyatomic ions contains oxygen
Per + root name of element + ate | Ion have one more oxygen than expected | Eg: perphosphate |
root name of element + ate | Ion has most common number of oxygen | Eg: phosphate |
root name of element + ite | Ion have one less oxygen than expected | Eg: phosphite |
Hypo + root name of element + ite | Ion have two less oxygen than expected | Eg: hypophosphite |
- Rules for naming acids that contains oxygen
1. Identify the name of polyatomic ion.
2. Convert “ate” to “ic” and “ite” to “ous”.
3. Finally the word acid should be added.
- Rules for naming acids that has no oxygen
-
- 7. Add prefix “hydro” to name of anion and “ic” to its ending.
-
- 8. Finally the word acid should be added.
To derive: the chemical name of
(d)

Answer to Problem 5.60QP
The chemical name is potassium dichromate(IV).
Explanation of Solution
(e)
Interpretation:
The chemical names of given compounds has to be derived.
Concept introduction:
- Rules for naming compounds:
1. Cation should come first followed by anion.
2. Provide a roman numeral for cation to mention oxidation number of it.
3. For anion, give root name of anion + ide.
- Rules for naming polyatomic ions contains oxygen
Per + root name of element + ate | Ion have one more oxygen than expected | Eg: perphosphate |
root name of element + ate | Ion has most common number of oxygen | Eg: phosphate |
root name of element + ite | Ion have one less oxygen than expected | Eg: phosphite |
Hypo + root name of element + ite | Ion have two less oxygen than expected | Eg: hypophosphite |
- Rules for naming acids that contains oxygen
1. Identify the name of polyatomic ion.
2. Convert “ate” to “ic” and “ite” to “ous”.
3. Finally the word acid should be added.
- Rules for naming acids that has no oxygen
-
- 9. Add prefix “hydro” to name of anion and “ic” to its ending.
-
- 10. Finally the word acid should be added.
To derive: the chemical name of
(e)

Answer to Problem 5.60QP
The chemical name is ammonium nitrite.
Explanation of Solution
(f)
Interpretation:
The chemical names of given compounds has to be derived.
Concept introduction:
- Rules for naming compounds:
1. Cation should come first followed by anion.
2. Provide a roman numeral for cation to mention oxidation number of it.
3. For anion, give root name of anion + ide.
- Rules for naming polyatomic ions contains oxygen
Per + root name of element + ate | Ion have one more oxygen than expected | Eg: perphosphate |
root name of element + ate | Ion has most common number of oxygen | Eg: phosphate |
root name of element + ite | Ion have one less oxygen than expected | Eg: phosphite |
Hypo + root name of element + ite | Ion have two less oxygen than expected | Eg: hypophosphite |
- Rules for naming acids that contains oxygen
1. Identify the name of polyatomic ion.
2. Convert “ate” to “ic” and “ite” to “ous”.
3. Finally the word acid should be added.
- Rules for naming acids that has no oxygen
-
- 11. Add prefix “hydro” to name of anion and “ic” to its ending.
-
- 12. Finally the word acid should be added.
To derive: the chemical name of
(f)

Answer to Problem 5.60QP
The chemical name is iodic(V) acid.
Explanation of Solution
(g)
Interpretation:
The chemical names of given compounds has to be derived.
Concept introduction:
- Rules for naming compounds:
1. Cation should come first followed by anion.
2. Provide a roman numeral for cation to mention oxidation number of it.
3. For anion, give root name of anion + ide.
- Rules for naming polyatomic ions contains oxygen
Per + root name of element + ate | Ion have one more oxygen than expected | Eg: perphosphate |
root name of element + ate | Ion has most common number of oxygen | Eg: phosphate |
root name of element + ite | Ion have one less oxygen than expected | Eg: phosphite |
Hypo + root name of element + ite | Ion have two less oxygen than expected | Eg: hypophosphite |
- Rules for naming acids that contains oxygen
1. Identify the name of polyatomic ion.
2. Convert “ate” to “ic” and “ite” to “ous”.
3. Finally the word acid should be added.
- Rules for naming acids that has no oxygen
-
- 13. Add prefix “hydro” to name of anion and “ic” to its ending.
-
- 14. Finally the word acid should be added.
To derive: the chemical name of
(g)

Answer to Problem 5.60QP
The chemical name is strontium sulphate.
Explanation of Solution
(h)
Interpretation:
The chemical names of given compounds has to be derived.
Concept introduction:
- Rules for naming compounds:
1. Cation should come first followed by anion.
2. Provide a roman numeral for cation to mention oxidation number of it.
3. For anion, give root name of anion + ide.
- Rules for naming polyatomic ions contains oxygen
Per + root name of element + ate | Ion have one more oxygen than expected | Eg: perphosphate |
root name of element + ate | Ion has most common number of oxygen | Eg: phosphate |
root name of element + ite | Ion have one less oxygen than expected | Eg: phosphite |
Hypo + root name of element + ite | Ion have two less oxygen than expected | Eg: hypophosphite |
- Rules for naming acids that contains oxygen
1. Identify the name of polyatomic ion.
2. Convert “ate” to “ic” and “ite” to “ous”.
3. Finally the word acid should be added.
- Rules for naming acids that has no oxygen
-
- 15. Add prefix “hydro” to name of anion and “ic” to its ending.
-
- 16. Finally the word acid should be added.
To derive: the chemical name of
(h)

Answer to Problem 5.60QP
The chemical name is aluminium(III) hydroxide.
Explanation of Solution
Want to see more full solutions like this?
Chapter 5 Solutions
Chemistry: Atoms First
- Curved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electrons-pushing arrows for the following reaction or mechanistic step(s).arrow_forwardCurved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. I I I H Select to Add Arrows HCI, CH3CH2OHarrow_forwardCurved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and the follow the arrows to draw the intermediate and product in this reaction or mechanistic step(s).arrow_forward
- Curved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and follow the curved arrows to draw the intermediates and product of the following reaction or mechanistic step(s).arrow_forwardCurved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and follow the arrows to draw the intermediate and the product in this reaction or mechanistic step(s).arrow_forwardLook at the following pairs of structures carefully to identify them as representing a) completely different compounds, b) compounds that are structural isomers of each other, c) compounds that are geometric isomers of each other, d) conformers of the same compound (part of structure rotated around a single bond) or e) the same structure.arrow_forward
- Given 10.0 g of NaOH, what volume of a 0.100 M solution of H2SO4 would be required to exactly react all the NaOH?arrow_forward3.50 g of Li are combined with 3.50 g of N2. What is the maximum mass of Li3N that can be produced? 6 Li + N2 ---> 2 Li3Narrow_forward3.50 g of Li are combined with 3.50 g of N2. What is the maximum mass of Li3N that can be produced? 6 Li + N2 ---> 2 Li3Narrow_forward
- Concentration Trial1 Concentration of iodide solution (mA) 255.8 Concentration of thiosulfate solution (mM) 47.0 Concentration of hydrogen peroxide solution (mM) 110.1 Temperature of iodide solution ('C) 25.0 Volume of iodide solution (1) used (mL) 10.0 Volume of thiosulfate solution (5:03) used (mL) Volume of DI water used (mL) Volume of hydrogen peroxide solution (H₂O₂) used (mL) 1.0 2.5 7.5 Time (s) 16.9 Dark blue Observations Initial concentration of iodide in reaction (mA) Initial concentration of thiosulfate in reaction (mA) Initial concentration of hydrogen peroxide in reaction (mA) Initial Rate (mA's)arrow_forwardDraw the condensed or line-angle structure for an alkene with the formula C5H10. Note: Avoid selecting cis-/trans- isomers in this exercise. Draw two additional condensed or line-angle structures for alkenes with the formula C5H10. Record the name of the isomers in Data Table 1. Repeat steps for 2 cyclic isomers of C5H10arrow_forwardExplain why the following names of the structures are incorrect. CH2CH3 CH3-C=CH-CH2-CH3 a. 2-ethyl-2-pentene CH3 | CH3-CH-CH2-CH=CH2 b. 2-methyl-4-pentenearrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





