FUNDAMENTALS OF THERMODYNAMICS
10th Edition
ISBN: 9781119634928
Author: Borgnakke
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 5, Problem 5.49P
Air in a piston/ cylinder goes through a Carnot cycle with the P-v diagram shown in Fig. 5.21. The high and low temperatures are 600K and 300K, respectively. The heat added at the high temperature is 250kJ/kg, and the lowest pressure in the cycle is 75kPa. Find the specific volume and pressure after heat rejection and the net work per unit mass.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
4
Give me right solution.. Urgent please
Q2: A piston-cylinder system contains 1 kg of air at (V1, P1, T1). The air is heated at constant pressure process until the volume is doubled. Then the air is compressed according to the low (PV=C) until the piston regains its original position. Then the air is cooled at constant volume processes until the pressure reach to the original value. Assume (V1, P1), Draw the cycle on p-v diagram and calculate 1- Net work done 2- Net heat
Chapter 5 Solutions
FUNDAMENTALS OF THERMODYNAMICS
Ch. 5 - Prob. 5.1PCh. 5 - A windowmounted air conditioner removes 3.5kJ from...Ch. 5 - R410A enters the evaporator (the cold beat...Ch. 5 - A large heat pump should upgrade 4MW of heat at...Ch. 5 - A car engine 5g/s fuel (equivalent to addition of...Ch. 5 - Prob. 5.37PCh. 5 - R134a fills a 0.1m3 capsule at 20°C, 200kPa. It is...Ch. 5 - Air in a piston/ cylinder goes through a Carnot...Ch. 5 - A heat engine receives 7kW from a 300°C source and...Ch. 5 - Consider the previous problem and assume the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A cycle works with one kg of air and is compressed through a polytropic process (pv12 = C) from state-l at 120 kPa, 350K to state-2 of 600kPa, following a constant pressure cooling process to state-3, then constant temperature heating from state-3 to state-1. Represent the cycle 3 to: on P-V diagram, find the temperature, pressure and volume at the end of each process of the cycle, and find also the net heat and work done.arrow_forwardProblem 4.01. A carnot refrigerator (carnot cycle heat pump in reverse) operating between Th and Te is used to cool and freeze a bottle of water, volume V, at a temperature To < Th to freezing temperature T (known density Pw, heat capacity cw). (a) Find the work required to cool and freeze the water. (b) Find the change in entropy in the heat baths, and use it to place a limit on the change in entropy of the water (without calculating the entropy change in the water). The C.O.P. of a carnot refrigerator: KR= Qc = W Te Th-Tearrow_forward2. If 0.17 kg/s of air are compressed isothermally from Pi = 96 kPaa and V, = 0.13 m/s to p2 = 620 kPaa, find the work, the change of entropy, and heat for: a) a nonflow process, and b) a steady flow process with V1 = 15 m/s and V2 = 60 %3D %3D m/s.arrow_forward
- Given 0.603MW electrical power supplied to a boiler when the temperature of the entering water is 20 C and the exiting temperature is 89 C. The flow of.the pressured water is 2 Kg/s. There is a negligible pressure drop through this boiler and it operates at a constant pressure of 3 bars. The specific heat is c = 4,370 J/(Kg K). a) Calculate the total rate of entropy production b) Calculate the total rate of exergy destruction (W). The dead state temperature is 293.2 K and pressure is 1 bar. c) Calculate the mass flowrate of fuel (natural gas, CH4) required to heat the water flow to the conditions of the problem if the electrical heating device is replaced with a gas fired boiler. The high heating value (HHV) of the fuel is 50.02 MJ/kg.arrow_forwardheat engine used a steam as working fluid has 3 kg/s and initial the steam undergoes to expansion process is 8 bar, dryness fraction ( 65) percent , and the expansion follows the law (PV¹.¹-C), down to a pressure of 0.3 bar. Calculate the change of entropy of steam during the process.arrow_forwardA cycle works with one kg of air and is compressed through a polytropic process (pv12 = C) from state-1 at 120 kPa, 350K to state-2 of 600kPa, following a constant pressure cooling process to state-3, then constant temperature heating from state-3 to state-1. Represent the cycle on P-V diagram, find the temperature, pressure and volume at the end of each process of the cycle, and find also the net heat and work done.arrow_forward
- 2. A two-stage air compressor has an intercooler between the two stages as shown below. The inlet state is 100 kPa, 290 K, and the final exit pressure is 1.6 MPa. Assume that the constant pressure intercooler cools the air to the inlet temperature, T= T1. It can be shown that the optimal pressure, P,= (P.Pa for minimum total compressor work. Find the specific compressor works, the intercooler heat transfer for the optimal P, and sketch and label the P-v and T-s diagrams. otf Corpressor Compressor Intercoolerarrow_forward40°C 4. A mixing chamber receives 5 kg/min of ammonia as saturated liquid at -20°C from one line (1) and ammonia at 40°C, 250 kPa from another line (2). The chamber also receives 325 kJ/min of energy as heat transferred from a 40°C reservoir as shown in figure. At the outlet, ammonia leaves as saturated vapor at -20°C. Find the mass flow rate in second line and calculate the total entropy generation in the process. Is this process possible?arrow_forwardSteam to a turbine at a mass flow rate of 1.4 kg/s, 700 kPa pressure and 400 °C enters the temperature. Steam at 100 kPa pressure and 1.4 m3/kg specific volume exits the turbine. Heat transfer from turbine to environment 50 kW, with turbine Since the boundary temperature between the environment is 70 °C, a) Find the power produced by the turbine, entropy produced in the turbine and isentropic efficiency of the turbine. Note: The changes in kinetic and potential energies will be neglected and T (K) = 273 + °C will be taken.arrow_forward
- 1. A closed tank, V = 10 L, containing 5 kg of water initially at 25 °C, is heated to 150 ° C by a heat pump that is receiving heat from the surroundings at 25 ° C. Assume that this process is reversible. Find the heat transfer to the water and its change in entropy.arrow_forwardA turbine, operating under steady- flow conditions, reccives 1000 kg/min of stcam. At the inlet, the pressure is 30 bar, the temperature is 400°C, the velocity At the exit, the pressure is 0.7 bar, the quality is (100%), and the velocity is 100 m/s. If the turbine produced a power output of 9300 KW. By using the energy balance of open system with sutable tables, answer the following: (a) What are the main assumptions ? (b) Calculate dh, AKe ? (c) Calculate the rate of heat transfer between the turbine and surroundings, in kW.arrow_forwardA thermodynamic cycle with 0.1 kg of air has 3 processes as in the figure. Assume air as ideal gas. Consider constant specific heat approach (take the air properties at 300 K). P;=140 kPa, Pz=420 kPa and V, = 0.05 m². PA 1-2: Constant volume process 2 2-3: Polytropic process with n=1 3-1: Constant pressure process 3 a) Find the temperature at State 3, in K. b) Calculate the specific work in the Processes 2-3 and 3-1, in kJ/kg. c) Calculate the heat transfer per unit mass in the Processes 2-3 and 3-1, in kJ/kg.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Power Plant Explained | Working Principles; Author: RealPars;https://www.youtube.com/watch?v=HGVDu1z5YQ8;License: Standard YouTube License, CC-BY