Prove the formulas given.
Answer to Problem 5.48P
The equations have been proven.
Explanation of Solution
The expression for Fourier series is
Multiply (I) with
But,
And
Therefore all the
Therefore,
Here
Thus
Therefore,
Rearrange the equation for
For
Now, again multiply (I) with
But,
And
Therefore all the
Therefore,
But
Equate and rearrange for
And
Hence proved.
Conclusion:
The equations have been proven.
Want to see more full solutions like this?
Chapter 5 Solutions
Classical Mechanics
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON