Classical Mechanics
Classical Mechanics
5th Edition
ISBN: 9781891389221
Author: John R. Taylor
Publisher: University Science Books
Question
Book Icon
Chapter 5, Problem 5.48P
To determine

Prove the formulas given.

Expert Solution & Answer
Check Mark

Answer to Problem 5.48P

The equations have been proven.

Explanation of Solution

The expression for Fourier series is

    f(t)=n=0[ancos(nωt)+bnsin(nωt)]={a0+a1cosωt+a1cosωt+...+ancosnωt+...+b1sinωt+b2sin2ωt+...+bnsinnωt}        (I)

Multiply (I) with cosmωt and integrate within the limit τ2 to τ2 with respect to dt

    f(t)cosmωtdt=τ2τ2a0cos(mωt)dt+τ2τ2a1cosωtcos(mωt)dt+τ2τ2a2cos2ωtcos(mωt)dt+...+τ2τ2ancosmωtcos(mωt)dt+...+τ2τ2b1cosωtcos(mωt)dt+τ2τ2b2cos2ωtcos(mωt)dt+...+τ2τ2bncosnωtcos(mωt)dt+...

But,

    τ2τ2cosnωtcos(mωt)dt={0ifmnτ2ifm=n0

And

  τ2τ2cosnωtcos(mωt)dt=0forallnandm

Therefore all the b terms in the integral will become zero all a terms become zero for except for m=n

Therefore,

    f(t)cosmωtdt=τ2τ2ancosnωtcos(nωt)dt=τ2τ2ancos2nωtdt=τ2τ2an(1+cos(2nωt)2)dt=12τ2τ2andt+τ2τ2(1+cos(2nωt)2)dt        (II)

Here cos(2nωt)2 is an even function from definite integral properties.

Thus τ2τ2(cos(2nωt)2)dt=0

Therefore,

    f(t)cosmωtdt=12τ2τ2andt+0=an2(t)τ2τ2an(τ2)

Rearrange the equation for an

    an=(2τ)f(t)cosmωtdtforn1

For a00 substitute zero for n in (II) and find a0

    f(t)cosmωtdt=τ2τ2a0(1+cos2(0)ωt2)dtτ2τ2f(t)dt=τ2τ2a0(1+12)dt=a0τa0=1ττ2τ2f(t)dt

Now, again multiply (I) with sinmωt and integrate within the limit τ2 to τ2 with respect to dt

f(t)cosmωtdt=τ2τ2a0cos(mωt)dt+τ2τ2a1cosωtsin(mωt)dt+τ2τ2a2cos2ωtsin(mωt)dt+...+τ2τ2ancosmωtsin(mωt)dt+...+τ2τ2b1cosωtsin(mωt)dt+τ2τ2b2cos2ωtsin(mωt)dt+...+τ2τ2bncosnωtsin(mωt)dt+...

But,

    τ2τ2cosnωtsin(mωt)dt={0ifmnτ2ifm=n0

And

  τ2τ2cosnωtsin(mωt)dt=0forallnandm

Therefore all the b terms in the integral will become zero all a terms become zero for except for m=n

Therefore,

    f(t)sinmωtdt=τ2τ2bnsinnωtsin(nωt)dt=τ2τ2bnsin2nωtdt=τ2τ2bn(1cos(2nωt)2)dt=12τ2τ2bndtτ2τ2(cos(2nωt)2)dt

But τ2τ2(cos(2nωt)2)dt=0

Equate and rearrange for bn

    τ2τ2f(t)sinmωtdt=12τ2τ2bndt0=bn2[t]τ2τ2=bnτ2bn=2ττ2τ2f(t)sinmωtdtforn1

And b0=0

Hence proved.

Conclusion:

The equations have been proven.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON