FUND OF ENG THERMODYN(LLF)+WILEYPLUS
9th Edition
ISBN: 9781119391777
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
what can happen to the universe as entropy increases?
A 300-lb iron casting, initially at 1050°F, is quenched in a tank filled with 2121 lb of oil, initially at 80°F. The iron casting and oil can be
modeled as incompressible with specific heats 0.10 Btu/lb · °R, and 0.45 Btu/lb · °R, respectively.
(a) For the iron casting and oil as the system,determine the final equilibrium temperature, in °F.
Ignore heat transfer between the system and its surroundings.
Tf =
i
°F
(b) For the iron casting and oil as the system,determine the amount of entropy produced within the tank, in Btu/°R.
Ignore heat transfer between the system and its surroundings.
O =
i
Btu/°R
Touthoolk ond Medie
can water ever acts counter to entropy to perhaps stop a reaction from moving forward?
Knowledge Booster
Similar questions
- A 300-lb iron casting, initially at 1500°F, is quenched in a tank filled with 2121 lb of oil, initially at 80°F. The iron casting and oil can be modeled as incompressible with specific heats 0.10 Btu/lb · °R, and 0.45 Btu/lb · °R, respectively. (a) For the iron casting and oil as the system,determine the final equilibrium temperature, in °F. Ignore heat transfer between the system and its surroundings. Tf = i °F (b) For the iron casting and oil as the system,determine the amount of entropy produced within the tank, in Btu/°R. Ignore heat transfer between the system and its surroundings. O = i Btu/°Rarrow_forward1. Define thermodynamic system, surrounding, boundary and universe. Show different types of boundaries. Give examples with sketches for open, close, and isolated systems.arrow_forwardA gas undergoes isobaric expansion at 0.05 bar from 0.1 m³ to 1.0 m³ when 2.0 KiloJoules of heat is applied to it. Which of the following is true regarding the work, heat and the change in internal energy involed in this change (all quantities in KiloJoules)? A. +4.5, -2.0, +2.5 B. -4.5, +2.0, -2.5 C. +4.5, +2.0, +6.5 D. -4.5, -2.0, -6.5arrow_forward
- Carbon dioxide (CO2) fills a closed, rigid tank fitted with a paddle wheel, initially at 80°F, 50 lbf/in2, and a volume of 2.2 ft3. The gas is stirred until its temperature is 500°F. During this process heat transfer from the gas to its surroundings occurs in an amount 2.6 Btu. Assume ideal gas behavior, but do not assume constant specific heats. Kinetic and potential energy effects can be ignored. Determine the mass of the carbon dioxide, in lb, and the work, in Btu.arrow_forwardA divider separates 1 lb mass of carbon monoxide (CO) from a thermal reservoir at 150o F. the carbon monoxide, initially at 60o F and 150 lbf/in2, expands isothermally to a final pressure of 10 lbf/in2 while receiving heat transfer through the divider from the reservoir. The carbon monoxide can be modeled as an ideal gas. (a) For the carbon monoxide as the system, evaluate the work and heat transfer, each in Btu and the amount of entropy produced, in Btu/oR. (b) Evaluate the entropy production, in Btu/oR, for an enlarged system that includesthe carbon monoxide and the divider, assuming the state of the divider remains unchanged. Compare with the entropy production of part (a) and comment on the difference.arrow_forwardA 300-lb iron casting. initially at 600°F, is quenched in a tank filled with 2121 lb of oil, initially at 80°F. The iron casting and oil can be modeled as incompressible with specific heats 0.10 Btu/lb - °R. and 0.45 Btu/lb - °R, respectively. (a) For the iron casting and oil as the system.determine the final equilibrium temperature, in °F. Ignore heat transfer between the system and its surroundings. °F (b) For the iron casting and oil as the system,determine the amount of entropy produced within the tank, in Btu/°R. Ignore heat transfer between the system and its surroundings. Btu/°Rarrow_forward
- Carbon dioxide (molar mass 44 kg/kmol) expands reversibly in a perfectly thermally insulated cylinder from 3.7 bar, 220 0C to a volume of 0.085 m3. If the initial volume occupied was 0.02 m3, calculate the work input in kJ to 3 decimal places. Assume nitrogen to be a perfect gas and take cv = 0.63 k J / k g K.arrow_forwardboundaries. Classification of thermodynamic Systemsarrow_forwardWhich of the following statements correctly completes the sentence: "The state postulate..." states that a system in equilibrium can be fully defined if two independent properties of the system are known. O O O O O ... relates the net heat and work inputs to a system to the change in its internal energy. allows calculation of change in entropy from the heat transfers in a system. states that the work done by a system to with a moving boundary is equal to the area under the process line when plotted on a pV diagram. allows us to convert extensive property values to intensive property values.arrow_forward
- Bernoulli's principle is an example of which law of thermodynamics. Explain why?arrow_forwardCarbon dioxide (CO₂) fills a closed, rigid tank fitted with a paddle wheel, initially at 80°F, 50 lb/in², and a volume of 1.6 ft³. The gas is stirred until its temperature is 500°F. During this process heat transfer from the gas to its surroundings occurs in an amount 2.6 Btu. Assume ideal gas behavior, but do not assume constant specific heats. Kinetic and potential energy effects can be ignored. Determine the mass of the carbon dioxide, in lb, and the work, in Btu. Step 1 Determine the mass of the carbon dioxide, in lb. m = 0.60792 Hint Your answer is correct. Step 2 * Your answer is incorrect. Determine the work, in Btu. W12= -53.4318 eTextbook and Media Hint lb Btu Attempts: 1 of 4 used Assistance Usedarrow_forwardHeat transfer is always from higher reservoir to a lower reservoir, and not the opposite, because: Higher energy means more capability to diffuse Higher energy means capability to be constant Higher energy means atoms and molecules are in ground state Lower energy means system is in equilibrium None of the abovearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY