FUND OF ENG THERMODYN(LLF)+WILEYPLUS
9th Edition
ISBN: 9781119391777
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
D2
A 300-lb iron casting, initially at 1050°F, is quenched in a tank filled with 2121 lb of oil, initially at 80°F. The iron casting and oil can be
modeled as incompressible with specific heats 0.10 Btu/lb · °R, and 0.45 Btu/lb · °R, respectively.
(a) For the iron casting and oil as the system,determine the final equilibrium temperature, in °F.
Ignore heat transfer between the system and its surroundings.
Tf =
i
°F
(b) For the iron casting and oil as the system,determine the amount of entropy produced within the tank, in Btu/°R.
Ignore heat transfer between the system and its surroundings.
O =
i
Btu/°R
Touthoolk ond Medie
Question #2
For the following processes, find the changes in h as appropriate.
The initial state pressure is p1 = 0.5 MPa. the final state is 2.
a. constant volume : v1 = 0.3 m3/kg, p2 = 0.3 MPa;
b. constant entropy : s1 = 6.3 kJ/kg K, p2 = 0.15 MPa;
c. constant volume : h1 = 2500 kJ/kg, p2 = 0.2 MPa;
d. constant enthalpy : s1 = 6.4 kJ/kg K, p2 = 0.2 MPa;
Knowledge Booster
Similar questions
- For state 1, how did you determine the value for hg = 2509.33 kJ/kg?arrow_forwardOne-quarter Ibmol of oxygen gas (O₂) undergoes a process from p₁ = 20 lbf/in², T₁ = 500°R to p2 = 150 lbf/in². For the process W = -500 Btu and Q = -177.5 Btu. Assume the oxygen behaves as an ideal gas. Determine T2, in °R, and the change in entropy, in Btu/°R.arrow_forwardExplain the following terms in relation to a system - Boundry, surroundings, equilibrium, phase, pure substance, entropy.arrow_forward
- Carbon dioxide (CO₂) fills a closed, rigid tank fitted with a paddle wheel, initially at 80°F, 50 lb/in², and a volume of 1.6 ft³. The gas is stirred until its temperature is 500°F. During this process heat transfer from the gas to its surroundings occurs in an amount 2.6 Btu. Assume ideal gas behavior, but do not assume constant specific heats. Kinetic and potential energy effects can be ignored. Determine the mass of the carbon dioxide, in lb, and the work, in Btu.arrow_forwardCarbon dioxide (CO₂) fills a closed, rigid tank fitted with a paddle wheel, initially at 80°F, 50 lb/in², and a volume of 1.6 ft³. The gas is stirred until its temperature is 500°F. During this process heat transfer from the gas to its surroundings occurs in an amount 2.6 Btu. Assume ideal gas behavior, but do not assume constant specific heats. Kinetic and potential energy effects can be ignored. Determine the mass of the carbon dioxide, in lb, and the work, in Btu. Step 1 Determine the mass of the carbon dioxide, in lb. m = 0.60792 Hint Your answer is correct. Step 2 * Your answer is incorrect. Determine the work, in Btu. W12= -53.4318 eTextbook and Media Hint lb Btu Attempts: 1 of 4 used Assistance Usedarrow_forwardA 300-lb iron casting, initially at 600°F, is quenched in a tank filled with 2121 lb of oil, initially at 80°F. The iron casting and oil can be modeled as incompressible with specific heats 0.10 Btu/lb · °R, and 0.45 Btu/lb · °R, respectively. (a) For the iron casting and oil as the system,determine the final equilibrium temperature, in °F. Ignore heat transfer between the system and its surroundings. Tf= i °F (b) For the iron casting and oil as the system,determine the amount of entropy produced within the tank, in Btu/°R. Ignore heat transfer between the system and its surroundings. O = i Btu/°Rarrow_forward
- Carbon dioxide (CO₂) fills a closed, rigid tank fitted with a paddle wheel, initially at 80°F, 20 lb/in², and a volume of 1.8 ft³. The gas is stirred until its temperature is 500°F. During this process heat transfer from the gas to its surroundings occurs in an amount 2.6 Btu. Assume ideal gas behavior, but do not assume constant specific heats. Kinetic and potential energy effects can be ignored. Determine the mass of the carbon dioxide, in lb, and the work, in Btu. Step 1 Determine the mass of the carbon dioxide, in lb. m = i Save for Later lb Attempts: 0 of 4 used Submit Answer Step 2 The parts of this question must be completed in order. This part will be available when you complete the part above.arrow_forwardfor steam, the specific ideal gas constant = 461.5 J/kg K A closed system is comprised of pure water substance initially at a temperature of 500 oC and a pressure of 20 MPa (state 1). The system undergoes an isochoric process whereby its pressure drops to 0.1 Mpa (state 2). Evaluate the specific entropy, specific volume and temperature of the system at state 2.arrow_forwardThe rate of entropy transfer associated with heat transfer from a closed system operating at steady state to its surroundings must be equal to the rate of entropy production due to irreversibilities within the system. O True O False eTextbook and Media Save for Laterarrow_forward
- find the changes in h as appropriate. The initial state pressure is p1 = 0.5 MPa. the final state is 2. a. constant volume : v1 = 0.3 m3/kg, p2 = 0.3 MPa; b. constant entropy : s1 = 6.3 kJ/kg K, p2 = 0.15 MPa; c. constant volume : h1 = 2500 kJ/kg, p2 = 0.2 MPa; d. constant enthalpy : s1 = 6.4 kJ/kg K, p2 = 0.2 MPa;arrow_forwardOne-tenth kmol of carbon monoxide (CO) in a piston- cylinder assembly undergoes a process from p1 = 150 kPa, T1 = 300 K to p2 = 500 kPa, T2 = 370 K. For the process, W = -300 kJ. Employing the ideal gas model, determine: (a) the heat transfer, in kJ. (b) the change in entropy, in kJ/K.arrow_forwardfor steam, the specific ideal gas constant = 461.5 J/kg K A closed system is comprised of pure water substance initially at a temperature of 500 oC and a pressure of 20 MPa (state 1). The system undergoes an isochoric process whereby its pressure drops to 0.1 Mpa (state 2). Sketch the process on a Temperature-specific entropy plot, showing the lines of constant pressure which pass through steps 1 and 2.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY