FUND OF ENG THERMODYN(LLF)+WILEYPLUS
9th Edition
ISBN: 9781119391777
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
Steady-state operating data are shown in the figure below for an open feedwater heater. Heat transfer from
the feedwater heater to its surroundings occurs at an average outer surface temperature of 50°C at a rate of
100 kW. Ignore the effects of motion and gravity and let To = 25°C, po = 1 bar. Determine
(a) the ratio of the incoming mass flow rates, m/ṁ2.
(b) the rate of exergy destruction, in kW.
P2 = 1 bar
Tz = 400°C
1
ṁy = 0.7 kg/s
Pi = 1 bar
T, = 40°C
Feedwater heater
X3 = 25%
P3 = 1 bar
Tp = 50°C
%3D
2)
Answer true (T) or false (F) as appropriate1. Entropy is a measure of irreversibilities in processes.2. The entropy of the universe must always decrease.3. The thermal efficiency of a Carnot engine is the maximum possible.4. The gas turbine operates on the Rankine cycle.5. The steam turbine operates on the Brayton cycle.
A closed system undergoes a cycle consisting of three process 1-2, 2-3 and 3-1. Given that Q12 = 30kJ, Q23 = 10 kJ, 1w2 = 5 kJ, 3w2 = 5 kJ and DE31 = 15 kJ, Evaluate Q31, w23, DE12 and DE23.
Knowledge Booster
Similar questions
- answer the following true or false. (a) A process that violates the second law of thermodynamics violates the first law of thermodynamics. (b) When a net amount of work is done on a closed system undergoing an internally reversible process, a net heat transfer of energy from the system also occurs. (c) A closed system can experience an increase in entropy only when a net amount of entropy is transferred into the system. (d) The change in entropy of a closed system is the same for every process between two specified end states.arrow_forwardWhich of the following statements best describes the 2nd law of thermodynamics? The total entropy of a a reservoir must stay the same or increase. The change in internal energy for an ideal gas is given as A U=mc _▲T. V Heat energy will always be transferred from a hotter object to a colder object. Around a complete cycle, the net heat and net work additions must sum to zero. O A reversible cyclic engine can convert all the heat input it receives into useful work output.arrow_forwardFind the cycle entropy production and answer if it operates irreversibly, reverisbly, or impossibly. A system executes a power cycle while receiving 1000 kJ by heat transfer at a temperature of 500 K and discharging energy by heat transfer at 300 K. Determine the cycle entropy production if the cycle thermal efficiency is 25% in kJ / K. Enter the answer without units, but with a minus sign if applicable. This cycle operates irreversibly reversibly impossibly.arrow_forward
- pls answer all the given thanksarrow_forwardAn open feedwater heater is a direct-contact heat exchanger used in vapor power plants. Shown in the figure below are feedwater heater with H20 operating data for an open 31 °C as the working fluid operating at steady state, where T1 P2=3 bar = 0.92 +2 P3 3 bar Saturated liquid m380 kg/s T, PT=3 bar Open feedwater 3 heater Ignoring stray heat transfer from the outside of the heat exchanger to its surroundings and kinetic and potential energy effects, determine the rate of entropy production, in kW/K.arrow_forwardAs shown in the figure below, two reversible cycles arranged in series each produce the same net work, Weycle: The first cycle receives energy QH by heat transfer from a hot reservoir at TH = 1000°R and rejects energy Q by heat transfer to a reservoir at an intermediate temperature, T. The second cycle receives energy Q by heat transfer from the reservoir at temperature Tand rejects energy Qc by heat transfer to a reservoir at Tc = 450°R. All energy transfers are positive in the directions of the arrows. Hot reservoir at TH R1 W cycle Reservoir at T W cycle R2 Cold reservoir at Te Determine: (a) the intermediate temperature T, in °R, and the thermal efficiency for each of the two power cycles. (b) the thermal efficiency of a single reversible power cycle operating between hot and cold reservoirs at 1000°R and 450°R, respectively. Also, determine the ratio of the net work developed by the single cycle to the net work developed by each of the two cycles, Wcyclearrow_forward
- Three sub steps of a thermodynamic cycle are employed in order to change the state of a gas from 1 bar, 1.5 cubic meter and internal energy of 512 kJ. The processes are: 1st step: Compression at constant PV to a pressure of 2 bar and internal energy of 690 kJ. 2nd step: A process where work transferred is zero and heat transferred is - 150 kJ. 3rd step: A process where work transferred is -50 kJ. without KE and PE changes, determine: a. heat transferred during 1st step (kJ) b. heat transferred during 3rd step (kJ)arrow_forwardAs shown in the figure below, two reversible cycles arranged in series each produce the same net work, Weycle. The first cycle receives energy QH by heat transfer from a hot reservoir at TH = 1500°R and rejects energy Q by heat transfer to a reservoir at an intermediate temperature, T. The second cycle receives energy Q by heat transfer from the reservoir at temperature T and rejects energy Qc by heat transfer to a reservoir at Tc = 500°R. All energy transfers are positive in the directions of the arrows. Hot reservoir at T RI W. cycle Reservoir at T R2 Wcycle Cold reservoir at Te Determine: (a) the intermediate temperature T, in °R, and the thermal efficiency for each of the two power cycles. (b) the thermal efficiency of a single reversible power cycle operating between hot and cold reservoirs at 1500°R and 500°R, respectively. Also, determine the ratio of the net work developed by the single cycle to the net work developed by each of the two cycles, Woycle-arrow_forwardA closed system undergoes a thermodynamic cycle with 2 steps: process 1-2 (from state 1 to state 2), process 2-1 (from state 2 to state 1). During process 1-2, the system received energy by heat transfer of 25J. During process 2-1, energy was transferred from the system to its surrounding by heat transfer of 15J. This is a power cycle. True or false?arrow_forward
- As shown in the figure below, two reversible cycles arranged in series each produce the same net work, Wcycle. The first cycle receives energy QH by heat transfer from a hot reservoir at TH-1000°R and rejects energy Q by heat transfer to a reservoir at an intermediate temperature, T. The second cycle receives energy Q by heat transfer from the reservoir at temperature T and rejects energy Qc by heat transfer to a reservoir at Te - 500°R. All energy transfers are positive in the directions of the arrows. Determine: Hot reservoir at TH lH R1 Reservoir Q at T 20 R2 lc Cold reservoir at Tc We cycle W Wcycle (a) the intermediate temperature T, in °R, and the thermal efficiency for each of the two power cycles. (b) the thermal efficiency of a single reversible power cycle operating between hot and cold reservoirs at 1000°R and 500°R, respectively. Also, determine the ratio of the network developed by the single cycle to the network developed by each of the two cycles, Wcycle-arrow_forwardA system undergoes a refrigeration cycle while receiving Qc by heat transfer at temperature Tc and discharging energy Qu by heat transfer at a higher temperature TH. There are no other heat transfers. (a) Using energy and exergy balances, show that the net work input to the cycle cannot be zero. (b) Show that the coefficient of performance of the cycle can be expressed as: Tc TH – TeA'¯ T(Qn – Q). B = where E, is the exergy destruction and To is the temperature of the exergy reference environment. (c) Using the result of part (b), obtain an expression for the maximum theoretical value for the coefficient of performance.arrow_forwardAs shown in the figure below, two reversible cycles arranged in series each produce the same net work, Wcycle. The first cycle receives energy QH by heat transfer from a hot reservoir at TH = 1500°R and rejects energy Q by heat transfer to a reservoir at an intermediate temperature, T. The second cycle receives energy Q by heat transfer from the reservoir at temperature T and rejects energy QC by heat transfer to a reservoir at TC = 450°R. All energy transfers are positive in the directions of the arrows. Determine:(a) the intermediate temperature T, in °R, and the thermal efficiency for each of the two power cycles.(b) the thermal efficiency of a single reversible power cycle operating between hot and cold reservoirs at 1500°R and 450°R, respectively. Also, determine the ratio of the net work developed by the single cycle to the net work developed by each of the two cycles, Wcycle.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY