Fluid Mechanics
Fluid Mechanics
8th Edition
ISBN: 9780073398273
Author: Frank M. White
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 5, Problem 5.36P
To determine

(a)

An expression for heat loss in terms of other three parameters.

Expert Solution
Check Mark

Answer to Problem 5.36P

Π1=QlossRAΔT=const

Explanation of Solution

Given information:

Heat loss Qloss depends on temperature difference ΔT, surface area A and R value of the window

The unit of R is ft2hF°

To find the relation between these variables,

Basically we have some steps to follow,

1. Find the number of variables (n) given.

2. Find the dimensions of the given variables.

3. Find j which is basically the number of different dimensions of given variables.

4. In other words j is the number of variables which won’t form pi product.

5. Find the number of desired pi products (k) which is given as, k=nj

6. Finally write the dimensionless function obtained.

Calculation:

Write the function,

Qloss=f(ΔT,A,R)

Count the number of variables n,

n=4

Find dimension of each variable,

QlossML2T3ΔTΘAL2RT3ΘM1

Find j,

j=3

Find the number of pi products,

k=nj=43=1

To obtain the equation,

Π1=ΔTaAbRcQloss=(Θ)a(L2)b(T3ΘM 1)c(ML2T3)=M0L0T0Θ0

Equate exponents,

Length: 2b+2=0

Mass: c+1=0

Time: 3c3=0

Temperature: a+c=0

Therefore, we get

a=1,b=1,c=1

Therefore, the expression will be,

Π1=ΔT1A1R1QlossΠ1= Q lossRAΔT=const

Conclusion:

The expression for rate of heat loss is given as,

Π1=QlossRAΔT=const.

To determine

(b)

What happens for rate of heat loss if the temperature difference doubles?

Expert Solution
Check Mark

Answer to Problem 5.36P

QlossΔT

Therefore, if temperature difference ΔT doubles, rate of heat loss Qloss also doubles.

Explanation of Solution

Given information:

Heat loss Qloss depends on temperature difference ΔT, surface area A and R value of the window

The unit of R is ft2hF°

To find the relation between these variables,

Basically we have some steps to follow,

1. Find the number of variables (n) given.

2. Find the dimensions of the given variables.

3. Find j which is basically the number of different dimensions of given variables.

4. In other words j is the number of variables which won’t form pi product.

5. Find the number of desired pi products (k) which is given as, k=nj

6. Finally write the dimensionless function obtained.

Calculation:

Write the function,

Qloss=f(ΔT,A,R)

Count the number of variables n,

n=4

Find dimension of each variable,

QlossML2T3ΔTΘAL2RT3ΘM1

Find j,

j=3

Find the number of pi products,

k=nj=43=1

To obtain the equation,

Π1=ΔTaAbRcQloss=(Θ)a(L2)b(T3ΘM 1)c(ML2T3)=M0L0T0Θ0

Equate exponents,

Length: 2b+2=0

Mass: c+1=0

Time: 3c3=0

Temperature: a+c=0

Therefore, we get

a=1,b=1,c=1

Therefore, the expression will be,

Π1=ΔT1A1R1QlossΠ1= Q lossRAΔT=const

According to the above equation, we can say that,

QlossΔT

Therefore, if temperature difference ΔT doubles, rate of heat loss Qloss also doubles.

Conclusion:

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Student Name: Student Id: College of Applied Engineering Al-Muzahmiyah Branch Statics (AGE 1330) Section-1483 Quiz-2 Time: 20 minutes Date: 16/02/2025 Q.1. A swinging door that weighs w=400.0N is supported by hinges A and B so that the door can swing about a vertical' axis passing through the hinges (as shown in below figure). The door has a width of b=1.00m and the door slab has a uniform mass density. The hinges are placed symmetrically at the door's edge in such a way that the door's weight is evenly distributed between them. The hinges are separated by distance a=2.00m. Find the forces on the hinges when the door rests half-open. Draw Free body diagram also. [5 marks] [CLO 1.2] Mool b ర a 2.0 m B 1.0 m
For the walking-beam mechanism shown in Figure 3, find and plot the x and y coordinates of the position of the coupler point P for one complete revolution of the crank O2A. Use the coordinate system shown in Figure 3. Hint: Calculate them first with respect to the ground link 0204 and then transform them into the global XY coordinate system. y -1.75 Ꮎ Ꮎ 4 = 2.33 0242.22 L4 x AP = 3.06 L2 = 1.0 W2 31° B 03 L3 = 2.06 P 1 8 5 .06 6 7 P'
The link lengths, gear ratio (2), phase angle (Ø), and the value of 02 for some geared five bar linkages are defined in Table 2. The linkage configuration and terminology are shown in Figure 2. For the rows assigned, find all possible solutions for angles 03 and 04 by the vector loop method. Show your work in details: vector loop, vector equations, solution procedure. Table 2 Row Link 1 Link 2 Link 3 Link 4 Link 5 λ Φ Ө a 6 1 7 9 4 2 30° 60° P y 4 YA B b R4 R3 YA A Gear ratio: a 02 d 05 r5 R5 R2 Phase angle: = 0₂-202 R1 05 02 r2 Figure 2. 04 X

Chapter 5 Solutions

Fluid Mechanics

Ch. 5 - Prob. 5.11PCh. 5 - The Stokes number, St, used in particle dynamics...Ch. 5 - Prob. 5.13PCh. 5 - Flow in a pipe is often measured with an orifice...Ch. 5 - The wall shear stress T in a boundary layer is...Ch. 5 - P5.16 Convection heat transfer data are often...Ch. 5 - If you disturb a tank of length L and water depth...Ch. 5 - Prob. 5.18PCh. 5 - Prob. 5.19PCh. 5 - Prob. 5.20PCh. 5 - Prob. 5.21PCh. 5 - As will be discussed in Chap. 11, the power P...Ch. 5 - The period T of vibration of a beam is a function...Ch. 5 - Prob. 5.24PCh. 5 - The thrust F of a propeller is generally thought...Ch. 5 - A pendulum has an oscillation period T which is...Ch. 5 - Prob. 5.27PCh. 5 - Prob. 5.28PCh. 5 - P5.29 When fluid in a pipe is accelerated linearly...Ch. 5 - Prob. 5.30PCh. 5 - P5.31 The pressure drop per unit length in...Ch. 5 - A weir is an obstruction in a channel flow that...Ch. 5 - Prob. 5.33PCh. 5 - Prob. 5.34PCh. 5 - Prob. 5.35PCh. 5 - Prob. 5.36PCh. 5 - Prob. 5.37PCh. 5 - Prob. 5.38PCh. 5 - Prob. 5.39PCh. 5 - Prob. 5.40PCh. 5 - A certain axial flow turbine has an output torque...Ch. 5 - When disturbed, a floating buoy will bob up and...Ch. 5 - Prob. 5.43PCh. 5 - Prob. 5.44PCh. 5 - P5.45 A model differential equation, for chemical...Ch. 5 - P5.46 If a vertical wall at temperature Tw is...Ch. 5 - The differential equation for small-amplitude...Ch. 5 - Prob. 5.48PCh. 5 - P5.48 A smooth steel (SG = 7.86) sphere is...Ch. 5 - Prob. 5.50PCh. 5 - Prob. 5.51PCh. 5 - Prob. 5.52PCh. 5 - Prob. 5.53PCh. 5 - Prob. 5.54PCh. 5 - Prob. 5.55PCh. 5 - P5.56 Flow past a long cylinder of square...Ch. 5 - Prob. 5.57PCh. 5 - Prob. 5.58PCh. 5 - Prob. 5.59PCh. 5 - Prob. 5.60PCh. 5 - Prob. 5.61PCh. 5 - Prob. 5.62PCh. 5 - The Keystone Pipeline in the Chapter 6 opener...Ch. 5 - Prob. 5.64PCh. 5 - Prob. 5.65PCh. 5 - Prob. 5.66PCh. 5 - Prob. 5.67PCh. 5 - For the rotating-cylinder function of Prob. P5.20,...Ch. 5 - Prob. 5.69PCh. 5 - Prob. 5.70PCh. 5 - The pressure drop in a venturi meter (Fig. P3.128)...Ch. 5 - Prob. 5.72PCh. 5 - Prob. 5.73PCh. 5 - Prob. 5.74PCh. 5 - Prob. 5.75PCh. 5 - Prob. 5.76PCh. 5 - Prob. 5.77PCh. 5 - Prob. 5.78PCh. 5 - Prob. 5.79PCh. 5 - Prob. 5.80PCh. 5 - Prob. 5.81PCh. 5 - A one-fiftieth-scale model of a military airplane...Ch. 5 - Prob. 5.83PCh. 5 - Prob. 5.84PCh. 5 - *P5.85 As shown in Example 5.3, pump performance...Ch. 5 - Prob. 5.86PCh. 5 - Prob. 5.87PCh. 5 - Prob. 5.88PCh. 5 - P5.89 Wall friction Tw, for turbulent flow at...Ch. 5 - Prob. 5.90PCh. 5 - Prob. 5.91PCh. 5 - Prob. 5.1WPCh. 5 - Prob. 5.2WPCh. 5 - Prob. 5.3WPCh. 5 - Prob. 5.4WPCh. 5 - Prob. 5.5WPCh. 5 - Prob. 5.6WPCh. 5 - Prob. 5.7WPCh. 5 - Prob. 5.8WPCh. 5 - Prob. 5.9WPCh. 5 - Prob. 5.10WPCh. 5 - Given the parameters U,L,g,, that affect a certain...Ch. 5 - Prob. 5.2FEEPCh. 5 - Prob. 5.3FEEPCh. 5 - Prob. 5.4FEEPCh. 5 - Prob. 5.5FEEPCh. 5 - Prob. 5.6FEEPCh. 5 - Prob. 5.7FEEPCh. 5 - Prob. 5.8FEEPCh. 5 - In supersonic wind tunnel testing, if different...Ch. 5 - Prob. 5.10FEEPCh. 5 - Prob. 5.11FEEPCh. 5 - Prob. 5.12FEEPCh. 5 - Prob. 5.1CPCh. 5 - Prob. 5.2CPCh. 5 - Prob. 5.3CPCh. 5 - Prob. 5.4CPCh. 5 - Does an automobile radio antenna vibrate in...Ch. 5 - Prob. 5.1DPCh. 5 - Prob. 5.2DP
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Properties of Fluids: The Basics; Author: Swanson Flo;https://www.youtube.com/watch?v=TgD3nEO1iCA;License: Standard YouTube License, CC-BY
Fluid Mechanics-Lecture-1_Introduction & Basic Concepts; Author: OOkul - UPSC & SSC Exams;https://www.youtube.com/watch?v=6bZodDnmE0o;License: Standard Youtube License