
To rewrite:
This function in dimensionless form, using dimensional analysis.

Answer to Problem 5.1CP
The dimensionless function is
Explanation of Solution
Given Information:
For long circular rough pipes in turbulent flow, wall shear
Concept Used:
The number of pi groups are to be calculated:
Where k is the number of variables and r is the number of fundamental references.
On substituting 6 for k and 3 for r ,
Calculation:
Dimensional analysis is applied to find the pi groups.
First pi group:
Where
On substituting
On equating M coefficients:
On equating T coefficients:
On equating L coefficients:
Hence, a = 1, b = 1
Therefore, the first pi group is as follows:
Second pi group:
Where
On substituting
On equating M coefficients:
On equating T coefficients:
On equating L coefficients:
Therefore, the second pi group is as follows:
Third pi group:
Where
On substituting
On equating M coefficients:
On equating T coefficients:
On equating L coefficients:
Therefore, the third pi group is as follows:
Hence as per the choices:
On substituting
Where
Conclusion:
The dimensionless function is
To plot:
Data using the dimensionless form obtained, a curve fit formula and a single value of a range.

Answer to Problem 5.1CP
The data is plotted as above, the curve fit formula is
Explanation of Solution
Given Information:
Diameter of pipe, d = 5 cm
The following values of wall shear stress are shown by the measurements for flow of water at 20?:
Concept Used:
The parameter
As per the table (Moody chart):
The velocity is calculated as follows:
Reynolds number is calculated as follows:
The skin friction coefficient is calculated as follows:
Calculation:
On substituting 1.5 gal/min for Q and 50 mm for d in the calculation of velocity:
On substituting 998 kg/m3 for
On substituting 0.05 Pa for
Remaining values are also calculated similarly and tabulated as follows:
V (m/s) | 0.0481972 | 0.0963944 | 0.1927888 | 0.2891832 | 0.3855776 | 0.4498406 |
Re | 2405 | 4810 | 9620 | 14430 | 19240 | 22447 |
Cf | 0.021567 | 0.019411 | 0.009975 | 0.007668 | 0.005796 | 0.00619 |
The curve is plotted between Cf versus Re:
The following equation shows the power law curve fit in the plot:
Hence, 95.3% is the correlation.
Hence, the curve is valid for only Reynolds number range of 2000-22000 and single
Conclusion:
The data is plotted as above, the curve fit formula is
Want to see more full solutions like this?
Chapter 5 Solutions
Fluid Mechanics
- 40.00 30.00 100.00- 100.00 P = 1000 N A=167 d=140.00 100.00- -b 20.00 200.00 Weld Strength P = 273 N/mm^2 Electrod E60 Safety factor S₁ = 3 Force P = 1000 N Using by SOLIDWORKSarrow_forwardWhat are the reaction forces in A and B?arrow_forwardPearson eText Study Area Access Pearson mylabmastering.pearson.com P Pearson MyLab and Mastering Problem 15.6 P Course Home b Answered: HW_02.pdf EE 213-01 > Assignments HW_#... 3 of 8 ■ Review Document Sharing User Settings The jet plane has a mass of 250 Mg and a horizontal velocity of 100 m/s when t = 0. Part A If both engines provide a horizontal thrust which varies as shown in the graph in (Figure 1), determine the plane's velocity in 5 s. Neglect air resistance and the loss of fuel during the motion. Express your answer to three significant figures and include the appropriate units. Figure 1 of 1 > ☐ μÅ ? v = Value Units Submit Request Answer Provide Feedback Next >arrow_forward
- Access Pearson mylabmastering.pearson.com P Pearson MyLab and Mastering Problem 15.43 P Course Home b Answered: HW_02.pdf EE 213-01 > Assignments HW_#... Pearson eText Study Area Document Sharing User Settings The 20-g bullet is travelling at 400 m/s when it becomes embedded in the 2-kg stationary block. The coefficient of kinetic friction between the block and the plane is μk = 0.2. (Figure 1) Part A Determine the distance the block will slide before it stops. Express your answer to three significant figures and include the appropriate units. Figure 1 of 1 με S = Value Units Submit Request Answer Provide Feedback ? 4 of 8 Review Next >arrow_forwardAccess Pearson mylabmastering.pearson.com P Pearson MyLab and Mastering Problem 15.64 P Course Home b Answered: HW_02.pdf EE 213-01 > Assignments HW_#... 5 of 8 Pearson eText Study Area Document Sharing User Settings Ball A has a mass of 3 kg and is moving with a velocity of (VA)1 = 8 m/s when it makes a direct collision with ball B, which has a mass of 2.5 kg and is moving with a velocity of (VB) 1 = 4 m/s. Suppose that e = 0.7. Neglect the size of the balls. (Figure 1) Part A Determine the velocity of A just after the collision. ■Review Express your answer to three significant figures and include the appropriate units. Assume the positive direction is to the right. Figure 1 of 1 ◎ на ? (VA)2= Value Units Submit Request Answer Part B Determine the velocity of B just after the collision. Express your answer to three significant figures and include the appropriate units. Assume the positive direction is to the right. μÅ ? (VB)2= = Value Units Submit Request Answer Provide Feedback Next…arrow_forwardI only need help with number 3, actually just the theta dot portion. Thanks! I have Vr = 10.39 ft/sarrow_forward
- Only 100% sure experts solve it correct complete solutions okk don't use guidelines or ai answers okk will dislike okkk. Only human experts solved itarrow_forwardAirplanes A and B, flying at constant velocity and at the same altitude, are tracking the eye of hurricane C. The relative velocity of C with respect to A is 300 kph 65.0° South of West, and the relative velocity of C with respect to B is 375 kph 50.0° South of East. A 120.0 km B 1N 1. Determine the relative velocity of B with respect to A. A ground-based radar indicates that hurricane C is moving at a speed of 40.0 kph due north. 2. Determine the velocity of airplane A. 3. Determine the velocity of airplane B. Consider that at the start of the tracking expedition, the distance between the planes is 120.0 km and their initial positions are horizontally collinear. 4. Given the velocities obtained in items 2 and 3, should the pilots of planes A and B be concerned whether the planes will collide at any given time? Prove using pertinent calculations. (Hint: x = x + vt) 0arrow_forwardOnly 100% sure experts solve it correct complete solutions okk don't use guidelines or ai answers okk will dislike okkk.arrow_forward
- Solve this probem and show all of the workarrow_forwardThe differential equation of a cruise control system is provided by the following equation: WRITE OUT SOLUTION DO NOT USE A COPIED SOLUTION Find the closed loop transfer function with respect to the reference velocity (vr) . a. Find the poles of the closed loop transfer function for different values of K. How does the poles move as you change K? b. Find the step response for different values of K and plot in MATLAB. What can you observe?arrow_forwardSolve this problem and show all of the workarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





