EBK FIRST COURSE IN PROBABILITY, A
10th Edition
ISBN: 9780134753683
Author: Ross
Publisher: VST
expand_more
expand_more
format_list_bulleted
Question
thumb_up100%
Chapter 5, Problem 5.2P
To determine
To compute:
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
he following table shows the returns of two types of investments, stocks (x) and bonds (y), under two different scenarios: boom and recession. The frequency f(∙) indicated the probability of boom and recession, and it is the same for any type of investment.
Suppose you diversify your investments by splitting your funds half and half between stocks and bonds. That is, z = 1⁄2x + 1⁄2y. Find E(z) and the riskiness (standard deviation) of z.
2. A system consisting of one original unit plus a spare can function for a
random amount of time X. If the density function is given (units in months)
by
f(x) = {kxe x> 0.
(a) What is the probability that the system functions for at most 4 months?
(b) What is the probability that the system functions for at least 3 months?
9) The effectiveness of solar-energy heating units depends on the amount of radiation available
from the sun. During a typical October, daily total solar radiation in Tampa, Florida,
approximately follows the following probability density function (units are in hundreds of
calories):
3
f (x) ={32
(x- 2)(6-x) for2
Chapter 5 Solutions
EBK FIRST COURSE IN PROBABILITY, A
Ch. 5 - Let X be a random variable with probability...Ch. 5 - Prob. 5.2PCh. 5 - Prob. 5.3PCh. 5 - The probability density function of X. the...Ch. 5 - Prob. 5.5PCh. 5 - Compute E[X] if X has a density function given by...Ch. 5 - The density function of X is given by...Ch. 5 - The lifetime in hours of an electronic tube is a...Ch. 5 - Consider Example 4b &I of Chapter 4 &I, but now...Ch. 5 - Trains headed for destination A arrive at the...
Ch. 5 - A point is chosen at random on a line segment of...Ch. 5 - A bus travels between the two cities A and B....Ch. 5 - You arrive at a bus stop at 10A.M., knowing that...Ch. 5 - Let X be a uniform (0, 1) random variable. Compute...Ch. 5 - If X is a normal random variable with parameters...Ch. 5 - The annual rainfall (in inches) in a certain...Ch. 5 - The salaries of physicians in a certain speciality...Ch. 5 - Suppose that X is a normal random variable with...Ch. 5 - Let be a normal random variable with mean 12 and...Ch. 5 - If 65 percent of the population of a large...Ch. 5 - Suppose that the height, in inches, of a...Ch. 5 - Every day Jo practices her tennis serve by...Ch. 5 - One thousand independent rolls of a fair die will...Ch. 5 - The lifetimes of interactive computer chips...Ch. 5 - Each item produced by a certain manufacturer is,...Ch. 5 - Two types of coins are produced at a factory: a...Ch. 5 - In 10,000 independent tosses of a coin, the coin...Ch. 5 - Twelve percent of the population is left handed....Ch. 5 - A model for the movement of a stock supposes that...Ch. 5 - An image is partitioned into two regions, one...Ch. 5 - a. A fire station is to be located along a road of...Ch. 5 - The time (in hours) required to repair a machine...Ch. 5 - If U is uniformly distributed on (0,1), find the...Ch. 5 - Jones figures that the total number of thousands...Ch. 5 - Prob. 5.35PCh. 5 - The lung cancer hazard rate (t) of a t-year-old...Ch. 5 - Suppose that the life distribution of an item has...Ch. 5 - If X is uniformly distributed over (1,1), find (a)...Ch. 5 - Prob. 5.39PCh. 5 - If X is an exponential random variable with...Ch. 5 - If X is uniformly distributed over(a,b), find a...Ch. 5 - Prob. 5.42PCh. 5 - Find the distribution of R=Asin, where A is a...Ch. 5 - Let Y be a log normal random variable (see Example...Ch. 5 - The speed of a molecule in a uniform gas at...Ch. 5 - Show that E[Y]=0P{Yy}dy0P{Yy}dy Hint: Show that...Ch. 5 - Show that if X has density function f. then...Ch. 5 - Prob. 5.4TECh. 5 - Use the result that for a nonnegative random...Ch. 5 - Prob. 5.6TECh. 5 - The standard deviation of X. denoted SD(X), is...Ch. 5 - Let X be a random variable that takes on values...Ch. 5 - Show that Z is a standard normal random variable;...Ch. 5 - Let f(x) denote the probability density function...Ch. 5 - Let Z be a standard normal random variable Z and...Ch. 5 - Use the identity of Theoretical Exercises 5.5 .Ch. 5 - The median of a continuous random variable having...Ch. 5 - The mode of a continuous random variable having...Ch. 5 - If X is an exponential random variable with...Ch. 5 - Compute the hazard rate function of X when X is...Ch. 5 - If X has hazard rate function X(t), compute the...Ch. 5 - Prob. 5.18TECh. 5 - If X is an exponential random variable with mean...Ch. 5 - Prob. 5.20TECh. 5 - Prob. 5.21TECh. 5 - Compute the hazard rate function of a gamma random...Ch. 5 - Compute the hazard rate function of a Weibull...Ch. 5 - Prob. 5.24TECh. 5 - Let Y=(Xv) Show that if X is a Weibull random...Ch. 5 - Let F be a continuous distribution function. If U...Ch. 5 - If X is uniformly distributed over (a,b), what...Ch. 5 - Consider the beta distribution with parameters...Ch. 5 - Prob. 5.29TECh. 5 - Prob. 5.30TECh. 5 - Prob. 5.31TECh. 5 - Let X and Y be independent random variables that...Ch. 5 - Prob. 5.33TECh. 5 - The number of minutes of playing time of a certain...Ch. 5 - For some constant c. the random variable X has the...Ch. 5 - Prob. 5.3STPECh. 5 - Prob. 5.4STPECh. 5 - The random variable X is said to be a discrete...Ch. 5 - Prob. 5.6STPECh. 5 - To be a winner in a certain game, you must be...Ch. 5 - A randomly chosen IQ test taker obtains a score...Ch. 5 - Suppose that the travel time from your home to...Ch. 5 - The life of a certain type of automobile tire is...Ch. 5 - The annual rainfall in Cleveland, Ohio, is...Ch. 5 - Prob. 5.12STPECh. 5 - Prob. 5.13STPECh. 5 - Prob. 5.14STPECh. 5 - The number of years that a washing machine...Ch. 5 - Prob. 5.16STPECh. 5 - Prob. 5.17STPECh. 5 - There are two types of batteries in a bin. When in...Ch. 5 - Prob. 5.19STPECh. 5 - For any real number y define byy+=y,ify00,ify0 Let...Ch. 5 - With (x) being the probability that a normal...Ch. 5 - Prob. 5.22STPECh. 5 - Letf(x)={13ex1313e(x1)ifx0if0x1ifx1 a. Show that f...Ch. 5 - Prob. 5.24STPE
Knowledge Booster
Similar questions
- If the probability density of X is given by f(x) =2x−3 for x > 10 elsewherecheck whether its mean and its variance exist.arrow_forwardA gasoline station gets its supply once a week. Suppose the PDF of X = demand in thousands of gallons for gasoline is: fx(x) = 5(1 – x)*I(0.1)(x) a. What is the probability that the demand for gasoline in a given week is more than 500 gallons? b. How much gasoline must the station get from its supplier in order for the probability that its supply will be exhausted in a given week shall be 0.01?arrow_forward%3D . If a and b are constants, then prove that expected value E[aX + b] = aE[X] + b.arrow_forward
- A decision maker has a utility function for monetary gains x given by U(x) = (x + 10,000)1/2. (a) Show that the person is indifferent between the status quo and L: With probability 1/3, he or she gains $80,000 With probability 2/3, he or she loses $10,000 (b) Suppose that this person has a painting. If there is a 10% chance that the painting valued at $10,000 will be stolen during the next year, what is the maximum amount (per year) that he/she would be willing to pay for insurance covering the loss of the painting? • What is certainty equivalent? • What is risk premium? (c) Is this person risk-averse, risk-neutral, or risk-taker? Why?arrow_forwardACTIVITY 2. Consider the probability mass functions of the two investment options that are presented to a businessperson. Compute for the mean and variance of each investment. Investment A Profit P(x) x: P(x) x2 x2- P(x) (x) 10,000 10 3 5, 000 10 -3,000 10 Ex2. P(x) Investment B Profit P(x) x2 x* - P(x) x: P(x) (지) 2 20,000 10 5 16,000 10 3 -15,000 10 Compare the measures of variability for each investment. Mean Variance Standard Deviation Investment A Investment Barrow_forwardLet Xinexp(A). Show that T-2 Xi Sulfeceay is Statistics.arrow_forward
- EXER 6.3 Find the covariance and the correlation coefficient between X and Y, if X and Y are jointly discrete random variables, with joint PMF given by: SHOW SOLUTIONS X\Y 0 1 6 0 28 6 1 28 2 0 333333 28 28 28 2120 28 0arrow_forwardIf Var(X1) = 2, Var(X2) = 4, Var(X3) = 3, Cov(X1, X2) = 1, Cov(X1, X3) = -2, and X2 and X3 are independent, find the mean and variance of Y = X1 – 2X2+3X3.arrow_forwardA fair coin is tossed three times and the random variable x equals the total number of heads. Find the sketch F(x) and f(x).arrow_forward
- If X is a random variable with pdf f(x) = 2x − 2 where x = (1, 2), find the variance of Y = 2X - 3.arrow_forwardIn statistical modelling, it is often the case that you have data obtained from an experiment and a mathematical model that you think is describing the experiment. A likelihood function describes the probability that your experimental data would have occurred as a function of your chosen mathematical model. For example, the likelihood function associated with a "gamma distribution" is given by L(x) = cr-1e Bz where a, B are both strictly positive constants, and the domain of L(x) is (0, 00). 1. Use Product Rule to find the critical numbers of L(x). 2.( 3. ( Use Logarithmic Differentiation to find the critical numbers of L(x). Which method do you prefer? Why? Note: Finding the critical numbers is the first step to maximizing the likelihood function, which makes sense as a next step. You want to find the mathematical model that most likely produced your data!arrow_forwardThe germination rate of seeds is defined as the proportion of seeds that, when properly planted and watered, sprout and grow. A certain variety of grass seed usually has a germination rate of 0.80, and a company wants to see if spraying the seeds with a chemical that is known to change germination rates in other species will change the germination rate of this grass species. (a) Suppose the company plans to spray a random sample of 400 seeds and conduct a two-sided test of 0: 0.8Hpusing = 0.05. They determine that the power of this test against the alternative 0.75pis 0.69. Interpret the power of this test.(b) Describe two ways the company can increase the power of the test. What is a disadvantage of each of these ways? (c) The company researchers spray 400 seeds with the chemical and 307 of the seeds germinate. This produces a 95% confidence interval for the proportion of seeds that germinate of (0.726, 0.809). Use this confidence interval to determine whether the test described in…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning