Nitrogen dioxide,
(a) Using data in Appendix 2, calculate
(b) Calculate
(a)
Interpretation:
The values of
Concept introduction:
Standard Gibbs free energy of a reaction is calculated by subtracting the standard Gibbs free energy of formation of reactants from standard Gibbs free energy of formation of products. The formula for standard Gibbs free energy of reaction is given as,
Where,
•
•
The relation between equilibrium constant and standard Gibbs free energy of reaction is given as,
Where,
•
•
•
Answer to Problem 5.27E
The values of
Explanation of Solution
From Appendix
The standard Gibbs free energy of formation of
The standard Gibbs free energy of formation of
Temperature at the equilibrium is
The given reaction is represented as,
The standard Gibbs free energy of given reaction is given as,
Where,
•
•
Substitute the value of
Therefore, the value
The relation between equilibrium constant and standard Gibbs free energy of reaction is given as,
Where,
•
•
•
Rearrange the above equation form the value of
Substitute the value of
Therefore, the value
The values of
(b)
Interpretation:
The value of
Concept introduction:
The equilibrium constant of a reaction is expressed as the ratio of partial pressure of products and reactants each raised to the power of their stoichiometric coefficients. A typical equilibrium reaction is represented as,
The algebraic form of equilibrium constant for the above chemical reaction is expressed as,
Where,
•
•
•
•
•
•
•
•
Answer to Problem 5.27E
The value of
Explanation of Solution
The initial number of moles of
The volume of the reaction system is
The temperature of the reaction system is
The value
The ideal gas equation is given as,
Where,
•
•
•
•
•
Rearrange the above equation for the value of
Substitute the value of
The table for initial and equilibrium amounts of the substances involved in the reaction is represented as,
The expression forequilibrium constant for the given equilibrium reaction is represented as,
Substitute the value of
Rearrange the equation to form a quadratic equation.
Solve the quadratic equation form the value of
Rearrange equation (1) form the value of
Substitute the value of
The number of mole of
The initial number of mole of
The expression for extent of reaction for
Where,
•
•
•
Substitute the value of
Therefore, the extent of the reaction is
The extent of the reaction is
Want to see more full solutions like this?
Chapter 5 Solutions
Bundle: Physical Chemistry, 2nd + Student Solutions Manual
- MATERIALS. Differentiate between interstitial position and reticular position.arrow_forwardFor each of the following, indicate whether the arrow pushes are valid. Do we break any rules via the arrows? If not, indicate what is incorrect. Hint: Draw the product of the arrow and see if you still have a valid structure. a. b. N OH C. H N + H d. e. f. مه N COHarrow_forwardDecide which is the most acidic proton (H) in the following compounds. Which one can be removed most easily? a) Ha Нь b) Ha Нь c) CI CI Cl Ha Ньarrow_forward
- Provide all of the possible resonanse structures for the following compounds. Indicate which is the major contributor when applicable. Show your arrow pushing. a) H+ O: b) c) : N :O : : 0 d) e) Оarrow_forwardDraw e arrows between the following resonance structures: a) b) : 0: :0: c) :0: N t : 0: بار Narrow_forwardDraw the major substitution products you would expect for the reaction shown below. If substitution would not occur at a significant rate under these conditions, check the box underneath the drawing area instead. Be sure you use wedge and dash bonds where necessary, for example to distinguish between major products. Note for advanced students: you can assume that the reaction mixture is heated mildly, somewhat above room temperature, but strong heat or reflux is not used. Cl Substitution will not occur at a significant rate. Explanation Check :☐ O-CH + Х Click and drag to start drawing a structure.arrow_forward
- Draw the major substitution products you would expect for the reaction shown below. If substitution would not occur at a significant rate under these conditions, check the box underneath the drawing area instead. Be sure you use wedge and dash bonds where necessary, for example to distinguish between major products. Note for advanced students: you can assume that the reaction mixture is heated mildly, somewhat above room temperature, but strong heat or reflux is not used. Cl C O Substitution will not occur at a significant rate. Explanation Check + O-CH3 Х Click and drag to start drawing a structure.arrow_forward✓ aw the major substitution products you would expect for the reaction shown below. If substitution would not occur at a significant rate under these conditions, check the box underneath the drawing area instead. Be sure you use wedge and dash bonds where necessary, for example to distinguish between major products. Note for advanced students: you can assume that the reaction mixture is heated mildly, somewhat above room temperature, but strong heat or reflux is not used. C Cl HO–CH O Substitution will not occur at a significant rate. Explanation Check -3 ☐ : + D Click and drag to start drawing a structure. © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use Privacy Cearrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- Don't used hand raiting and don't used Ai solutionarrow_forwardDetermine whether the following reaction is an example of a nucleophilic substitution reaction: Br OH HO 2 -- Molecule A Molecule B + Br 义 ollo 18 Is this a nucleophilic substitution reaction? If this is a nucleophilic substitution reaction, answer the remaining questions in this table. Which of the reactants is referred to as the nucleophile in this reaction? Which of the reactants is referred to as the organic substrate in this reaction? Use a ŏ + symbol to label the electrophilic carbon that is attacked during the substitution. Highlight the leaving group on the appropriate reactant. ◇ Yes O No O Molecule A Molecule B Molecule A Molecule B टेarrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning