(a)
Interpretation:
The expression for K for the given equilibrium is to be stated.
Concept introduction:
When any reaction is at equilibrium, a constant expresses a relationship between the reactant side and the product side. This constant is known as equilibrium constant. It is denoted by
The change in Gibbs free energy for a reaction when reactants and products are present in their standard states of pressure, forms and concentration is represented by
(a)

Answer to Problem 5.17E
The expression for K for the given equilibrium is,
Explanation of Solution
The given reaction is,
The expression for K for the given equilibrium is,
Where,
•
•
•
The expression for K for the given equilibrium is,
(b)
Interpretation:
The value of
Concept introduction:
When any reaction is at equilibrium, a constant expresses a relationship between the reactant side and the product side. This constant is known as equilibrium constant. It is denoted by
The change in Gibbs free energy for a reaction when reactants and products are present in their standard states of pressure, forms and concentration is represented by
(b)

Answer to Problem 5.17E
The value of
Explanation of Solution
The value of
The value of
The value of
The value of Gibbs free energy of the complete reaction is calculated by the expression,
Substitute the respective values of Gibbs free energy of the product and the reactant in the above expression.
The value of
(c)
Interpretation:
The value of K for the given equilibrium is to be calculated.
Concept introduction:
When any reaction is at equilibrium, a constant expresses a relationship between the reactant side and the product side. This constant is known as equilibrium constant. It is denoted by
The change in Gibbs free energy for a reaction when reactants and products are present in their standard states of pressure, forms and concentration is represented by
(c)

Answer to Problem 5.17E
The value of K for the given equilibrium is
Explanation of Solution
The calculated value of
The conversion of kilojoule to joule is done as,
Thus, the Gibbs free energy of the reaction becomes
The given temperature in appendix 2 at which all the
The value of gas constant, R is
The Gibbs expression is also expressed as,
Substitute the respective values of Gibbs energy, gas constant and temperature in the above expression.
The value of the value of K for the given equilibrium is
(d)
Interpretation:
The direction in which the reaction will move if
Concept introduction:
When any reaction is at equilibrium, a constant expresses a relationship between the reactant side and the product side. This constant is known as equilibrium constant. It is denoted by
The change in Gibbs free energy for a reaction when reactants and products are present in their standard states of pressure, forms and concentration is represented by
(d)

Answer to Problem 5.17E
If
Explanation of Solution
The given pressure for
The given pressure for
The given pressure for
The calculated value of equilibrium constant,
The expression for the equilibrium constant can be shown as,
Substitute the respective values of pressure of hydrogen cyanide and equilibrium constant in the above expression.
The given temperature in appendix 2 is
The value of gas constant, R is
The equilibrium constant with respect to concentration of the reaction is calculated by the expression,
Where,
•
•
•
•
Substitute all the respective values in the above expression.
Thus, the value of
If
Want to see more full solutions like this?
Chapter 5 Solutions
Bundle: Physical Chemistry, 2nd + Student Solutions Manual
- Another standard reference electrode is the standard calomel electrode: Hg2Cl2(s) (calomel) + 2e2 Hg() +2 Cl(aq) This electrode is usually constructed with saturated KCI to keep the Cl- concentration constant (similar to what we discussed with the Ag-AgCl electrode). Under these conditions the potential of this half-cell is 0.241 V. A measurement was taken by dipping a Cu wire and a saturated calomel electrode into a CuSO4 solution: saturated calomel electrode potentiometer copper wire CuSO4 a) Write the half reaction for the Cu electrode. b) Write the Nernst equation for the Cu electrode, which will include [Cu2+] c) If the voltage on the potentiometer reads 0.068 V, solve for [Cu²+].arrow_forward2. (Part B). Identify a sequence of FGI that prepares the Synthesis Target 2,4-dimethoxy- pentane. All carbons in the Synthesis Target must start as carbons in either ethyne, propyne or methanol. Hint: use your analysis of Product carbons' origins (Part A) to identify possible structure(s) of a precursor that can be converted to the Synthesis Target using one FGI. All carbons in the Synthesis Target must start as carbons in one of the three compounds below. H = -H H = -Me ethyne propyne Synthesis Target 2,4-dimethoxypentane MeOH methanol OMe OMe MeO. OMe C₂H₁₂O₂ Product carbons' origins Draw a box around product C's that came from A1. Draw a dashed box around product C's that came from B1.arrow_forwardDraw the skeletal ("line") structure of the smallest organic molecule that produces potassium 3-hydroxypropanoate when reacted with KOH. Click and drag to start drawing a structure. Sarrow_forward
- draw skeletal structures for the minor products of the reaction.arrow_forward1. Provide missing starting materials, reagents, products. If a product cannot be made, write NP (not possible) in the starting material box. C7H12O Ph HO H 1) 03-78 C 2) Me₂S + Ph .H OH + 2nd stereoisomer OH Ph D + enantiomer cat OsO 4 NMO H2O acetonearrow_forwardPlease note that it is correct and explains it rightly:Indicate the correct option. The proportion of O, C and H in the graphite oxide is:a) Constant, for the quantities of functional groups of acids, phenols, epoxy, etc. its constants.b) Depending on the preparation method, as much oxidant as the graphite is destroyed and it has less oxygen.c) Depends on the structure of the graphic being processed, whether it can be more tridimensional or with larger crystals, or with smaller crystals and with more edges.arrow_forward
- Check the box under each a amino acid. If there are no a amino acids at all, check the "none of them" box under the table. Note for advanced students: don't assume every amino acid shown must be found in nature. ནང་་་ OH HO HO NH2 + NH3 O OIL H-C-CO CH3-CH O C=O COOH COOH + H2N C-H O H2N C H CH3-CH CH2 HO H3N O none of them 口 CH3 CH2 OH Хarrow_forwardWhat is the systematic name of the product P of this chemical reaction? 010 HO-CH2-CH2-C-OH ☐ + NaOH P+ H2Oarrow_forward1. Provide missing starting materials, reagents, products. If a product cannot be made, write NP (not possible) in the starting material box. a) C10H12 Ph OMe AcOHg+ + enantiomer Br C6H10O2 + enantiomerarrow_forward
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning





