University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5, Problem 5.22DQ
You throw a baseball straight upward with speed υ0. When the ball returns to the point from where you threw it, how does its speed compare to υ0 (a) in the absence of air resistance and (b) in the presence of air resistance? Explain.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Two frogs of equal masses jump into the air with the same initial speed. Frog #1 goes straight up, while frog #2 goes up at a 73° angle above the horizontal. Assuming negligible air resistance, which of the following statements about the two frogs are correct?(There could be more than one correct choice.)
A) At their highest point, frog #2 is moving faster than frog #1.B) At their highest point, both of them have the same amount of gravitational potential energy. C) At their highest point, both of them have the same amount of kinetic energy.D) At their highest point, both of them have the same amount of mechanical energy.E) At their highest point, frog #1 has more gravitational potential energy than frog #2
A student is on the roof of the SP building, 15.0 m above the ground. Your physics instructor, who is 163 cm tall, is walking alongside the building at a constant speed of 0.35 m/s. If you wish to drop an egg on your instructors head, where should the instructor be when you release the egg? Assume the egg is in free fall and air friction is “negligible”.
You are standing on your balcony in an apartment building. You tossed a coin straight upwards at 4 m/s. Assume the coin leaves your hand at 4 m above ground, how long will it take to strike the ground?
Ignore air drag.
Hint: You can set the final position to be zero.
Chapter 5 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 5.1 - A traffic light of weight w hangs from two...Ch. 5.2 - Suppose you hold the glider in Example 5.12 so...Ch. 5.3 - Consider a box that is placed on different...Ch. 5.4 - Satellites are held in orbit by the force of our...Ch. 5 - A man sits in a seat that is hanging from a rope....Ch. 5 - In general, the normal force is not equal to the...Ch. 5 - A clothesline hangs between two poles. No matter...Ch. 5 - You drive a car up a steep hill at constant speed....Ch. 5 - For medical reasons, astronauts in outer space...Ch. 5 - To push a box up a ramp, which requires less...
Ch. 5 - A woman in an elevator lets go of her briefcase,...Ch. 5 - A block rests on an inclined plane with enough...Ch. 5 - A crate slides up an inclined ramp and then slides...Ch. 5 - A crate of books rests on a level floor. To move...Ch. 5 - In a world without friction, which of the...Ch. 5 - When you stand with bare feet in a wet bathtub,...Ch. 5 - You are pushing a large crate from the back of a...Ch. 5 - It is often said that friction always opposes...Ch. 5 - If there is a net force on a particle in uniform...Ch. 5 - A curve in a road has a bank angle calculated and...Ch. 5 - You swing a ball on the end of a lightweight...Ch. 5 - The centrifugal force is not included in the...Ch. 5 - A professor swings a rubber stopper in a...Ch. 5 - To keep the forces on the riders within allowable...Ch. 5 - A tennis ball drops from rest at the top of a tall...Ch. 5 - You throw a baseball straight upward with speed 0....Ch. 5 - You throw a baseball straight upward. If you do...Ch. 5 - You have two identical tennis balls and fill one...Ch. 5 - A ball is dropped from rest and feels air...Ch. 5 - A ball is dropped from rest and feels air...Ch. 5 - When a balled baseball moves with air drag, when...Ch. 5 - A ball is thrown from the edge of a high cliff....Ch. 5 - Two 25.0-N weights are suspended at opposite ends...Ch. 5 - In Fig. E5.2 each of the suspended blocks has...Ch. 5 - A 75.0-kg wrecking ball hangs from a uniform,...Ch. 5 - BIO Injuries to the Spinal Column. In the...Ch. 5 - A picture frame hung against a wall is suspended...Ch. 5 - A large wrecking ball is held in place by two...Ch. 5 - Find the tension in each cord in Fig. E5.7 if the...Ch. 5 - A 1130-kg car is held in place by a light cable on...Ch. 5 - A man pushes on a piano with mass 180 kg; it...Ch. 5 - In Fig. E5.10 the weight w is 60.0 N. (a) What is...Ch. 5 - BIO Stay Awake! An astronaut is inside a 2.25 106...Ch. 5 - A rocket of initial mass 125 kg (including all the...Ch. 5 - CP Genesis Crash. On September 8, 2004, the...Ch. 5 - Three sleds are being pulled horizontally on...Ch. 5 - Atwoods Machine. A 15.0-kg load of bricks hangs...Ch. 5 - CP An 8.00-Kg block of ice, released from rest at...Ch. 5 - A light rope is attached to a block with mass 4.00...Ch. 5 - CP Runway Design. A transport plane lakes off from...Ch. 5 - CP A 750.0-kg boulder is raised from a quarry 125...Ch. 5 - Apparent Weight. A 550-N physics student stands on...Ch. 5 - CP BIO Force During a Jump. When jumping straight...Ch. 5 - CP CALC A 2540-kg test rocket is launched...Ch. 5 - CP CALC A 2.00-kg box is moving to the right with...Ch. 5 - CP CALC A 5.00-kg crate is suspended from the end...Ch. 5 - BIO The Trendelenburg Position. After emergencies...Ch. 5 - In a laboratory experiment on friction, a 135-N...Ch. 5 - CP A stockroom worker pushes a box with mass 16.8...Ch. 5 - A box of bananas weighing 40.0 N rests on a...Ch. 5 - A 45.0-kg crate of tools rests on a horizontal...Ch. 5 - Some sliding rocks approach the base of a hill...Ch. 5 - A box with mass 10.0 kg moves on a ramp that is...Ch. 5 - A pickup truck is carrying a toolbox, but the rear...Ch. 5 - You are lowering two boxes, one on top of the...Ch. 5 - Consider the system shown in Fig. E5.34. Block A...Ch. 5 - CP Stopping Distance. (a) If the coefficient of...Ch. 5 - CP A 25.0-kg box of textbooks rests on a loading...Ch. 5 - Two crates connected by a rope lie on a horizontal...Ch. 5 - A box with mass m is dragged across a level floor...Ch. 5 - CP As shown in Fig. E5.34, block A (mass 2.25 kg)...Ch. 5 - You throw a baseball straight upward. The drag...Ch. 5 - A large crate with mass m rests on a horizontal...Ch. 5 - (a) In Example 5.18 (Section 5.3), what value of D...Ch. 5 - A stone with mass 0.80 kg is attached to one end...Ch. 5 - BIO Force on a Skaters Wrist. A 52-kg ice skater...Ch. 5 - A small remote-controlled car with mass 1.60 kg...Ch. 5 - 5.46A small car with mass 0.800 kg travels at...Ch. 5 - A small model car with mass m travels at constant...Ch. 5 - A flat (unbanked) curve on a highway has a radius...Ch. 5 - A 1125-kg car and a 2250-kg pickup truck approach...Ch. 5 - The Giant Swing at a county fair consists of a...Ch. 5 - In another version of the Giant Swing (see...Ch. 5 - A small button placed on a horizontal rotating...Ch. 5 - Rotating Space Stations. One problem for humans...Ch. 5 - The Cosmo Clock 21 Ferris wheel in Yokohama,...Ch. 5 - An airplane flies in a loop (a circular path in a...Ch. 5 - A 50.0-kg stunt pilot who has been diving her...Ch. 5 - Stay Dry! You tie a cord to a pail of water and...Ch. 5 - A bowling ball weighing 71.2 N (16.0 lb) is...Ch. 5 - BIO Effect on Blood of Walking. While a person is...Ch. 5 - An adventurous archaeologist crosses between two...Ch. 5 - Two ropes are connected to a steel cable that...Ch. 5 - In Fig. P5.62 a worker lifts a weight w by pulling...Ch. 5 - In a repair shop a truck engine that has mass 409...Ch. 5 - A horizontal wire holds a solid uniform ball of...Ch. 5 - A solid uniform 45.0-kg ball of diameter 32.0 cm...Ch. 5 - CP A box is sliding with a constant speed of 4.00...Ch. 5 - CP BIO Forces During Chin-ups. When you do a...Ch. 5 - CP CALC A 2.00-kg box is suspended from the end of...Ch. 5 - CALC A 3.00-kg box that is several hundred meters...Ch. 5 - CP A 5.00-kg box sits at rest at the bottom of a...Ch. 5 - Two boxes connected by a light horizontal rope are...Ch. 5 - A 6.00-kg box sits on a ramp that is inclined at...Ch. 5 - CP An 8.00-kg box sits on a ramp that is inclined...Ch. 5 - CP In Fig. P5.74, m1 = 20.0 kg and = 53.1. The...Ch. 5 - CP You place a book of mass 5.00 kg against a...Ch. 5 - Block A in Fig. P5.76 weighs 60.0 N. The...Ch. 5 - A block with mass m1 is placed on an inclined...Ch. 5 - BIO The Flying Leap of a Flea. High-speed motion...Ch. 5 - Block A in Fig. P5.79 weighs 1.20 N, and block B...Ch. 5 - CP Elevator Design. You are designing an elevator...Ch. 5 - CP CALC You are standing on a bathroom scale in an...Ch. 5 - A hammer is hanging by a light rope from the...Ch. 5 - A 40.0-kg packing case is initially at rest on the...Ch. 5 - If the coefficient of static friction between a...Ch. 5 - Two identical 15.0-kg balls, each 25.0 cm in...Ch. 5 - CP Traffic Court. You are called as an expert...Ch. 5 - Block A in Fig. P5.87 weighs 1.90 N, and block B...Ch. 5 - CP Losing Cargo. A 12.0-kg box rests on the level...Ch. 5 - Block A in Fig. P5.89 has mass 4.00 kg, and block...Ch. 5 - Two blocks connected by a cord passing over a...Ch. 5 - In terms of m1, m2, and g, find the acceleration...Ch. 5 - Block B, with mass 5.00 kg, rests on block A, with...Ch. 5 - Two objects, with masses 5.00 kg and 2.00 kg, hang...Ch. 5 - Friction in an Elevator. You are riding in an...Ch. 5 - A block is placed against the vertical front of a...Ch. 5 - Two blocks, with masses 4.00 kg and 8.00 kg, are...Ch. 5 - Block A, with weight 3w, slides down an inclined...Ch. 5 - Jack sits in the chair of a Ferris wheel that is...Ch. 5 - Bunked Curve I. A curve with a 120-m radius on a...Ch. 5 - Banked Curve II. Consider a wet roadway banked as...Ch. 5 - Blocks A, B, and C are placed as in Fig. P5.101...Ch. 5 - You are riding in a school bus. As the bus rounds...Ch. 5 - CALC You throw a rock downward into water with a...Ch. 5 - A 4.00-kg block is attached to a vertical rod by...Ch. 5 - On the ride Spindletop at the amusement park Six...Ch. 5 - A 70-kg person rides in a 30-kg cart moving at 12...Ch. 5 - A small bead can slide without friction on a...Ch. 5 - A physics major is working to pay her college...Ch. 5 - DATA In your physics lab, a block of mass m is at...Ch. 5 - DATA A road heading due cast passes over a small...Ch. 5 - DATA You are an engineer working for a...Ch. 5 - Moving Wedge. A wedge with mass M rests on a...Ch. 5 - Figure P5.112 5.113A wedge with mass M rests on a...Ch. 5 - Double Atwoods Machine. In Fig. P5.114 masses m1...Ch. 5 - A ball is held at rest at position A in Fig....Ch. 5 - FRICTION AND CLIMBING SHOES. Shoes made for the...Ch. 5 - FRICTION AND CLIMBING SHOES. Shoes made for the...Ch. 5 - FRICTION AND CLIMBING SHOES. Shoes made for the...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desi...
Cosmic Perspective Fundamentals
21. Two -diameter aluminum electrodes are spaced apart.
The electrodes are connected to a battery.
...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
A solid sphere of radius R carries charge Q distributed uniformly throughout its volume. Find the potential dif...
Essential University Physics (3rd Edition)
A skier starts from rest at the top of a 24 slope 1.3 km long. Neglecting friction, how long does it take to re...
Essential University Physics: Volume 1 (3rd Edition)
The pV-diagram of the Carnot cycle.
Sears And Zemansky's University Physics With Modern Physics
71. A 20 kg sphere is at the origin and a 10 kg sphere is at (x, y) = (20 cm, 0 cm). At what point or points co...
College Physics: A Strategic Approach (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- I need help with this physics question #arrow_forwardYou are standing at the top of a cliff that has a stairstep configuration. There is a vertical drop of 6 m at your feet, then a horizontal shelf of 5 m , then another drop of 4 m to the bottom of the canyon, which has a horizontal floor. You kick a 0.44 kg rock, giving it an initial horizontal velocity that barely clears the shelf below What initial horizontal velocity v will be required to barely clear the edge of the shelf below you? The acceleration of gravity is 9.8 m/s^2 . Consider air friction to be negligible. Answer in units of m/s. How far from the bottom of the second cliff will the projectile land? Answer in units of m.arrow_forwardA pendulum has a length l (the rope is massless). The mass of the object suspended from the pendulum is m. With rope horizontal θ = 90o When it makes an angle of degrees, we first leave the object at no speed. Any friction can be neglected. Gravitational acceleration g. Give your answers in terms of l, m and g. When = 0o, what is the tension in the rope?arrow_forward
- An archer shoots an 18.0-gram arrow at a 43.0-gram target on a wall 32.0 m high. If the arrow is shot at a velocity of v0 = 60.0 m/s, the speed of the arrow is 54.5 m/s when it reaches the target. If the arrow becomes embedded in the target and they both fly off the wall together, at what speed will they leave the wall? Should I use 60.0 m/s in the equation or 54.5 m/s: V’=(0.018)(60.0m/s)/ (0.061) -or- V’=(0.018)(54.5m/s)/ (0.061)arrow_forwardA piano has been pushed to the top of the ramp at the back of a moving van. The workers think it is safe, but as they walk away, it begins to roll down the ramp. Neglect the friction between the piano and the ramp. If the back of the truck is 1.5 mm above the ground and the ramp is inclined at 26 ∘∘ , how much time do the workers have to get to the piano before it reaches the bottom of the ramp?arrow_forwardLet us consider the fall of a pole vaulter as a projectile once he releases the pole. The pole has a lake of 15 8 feet and once the athlete releases the pole he will find a mattress 2 feet high, 10 feet wide and 16 feet long, which protects him in the fall. If an athlete lets go of the pole when it was 13.7 ft above the ground with a speed of 15.7 ft/s at an angle of 73 degrees. Enter the horizontal distance that the athlete will travel with the indicated conditions, add the units in the resultarrow_forward
- A golf ball is launched into the air at an angle. Its horizontal speed is 30 m/s and its vertical speed is 20 m/s. What is its horizontal speed after three seconds? You can ignore friction and air resistance.arrow_forwarda (m/s?) В 2. SpaceX engineers is planning to build a 2-stage rocket which has a-t graph as shown. By their design, the first stage A will burn out after 20 seconds and then the second stage B will ignite. Plot the v-t and s-t graphs which describe the two-stage motion of the missile for 0 sts 30s. A 30 22 t (s) 20 30arrow_forwardOn Mars, a ball is rolling from a ground to a hill, and we know the height of the hill, Z, is 10 m, and the initial velocity ofthe ball on the ground and the final velocity on the hill are known: V1 = 20 m/s and V2 = 10 m/s, respectively. The mass ofthe ball, m, is 4 kg. The gravitational acceleration on Mars, gMars, is 3.7 m/s2. Please calculate 1) the change in kineticenergy, ΔKE, in J and 2) the change in potential energy, ΔPE, in J, of the ball for the rolling process.arrow_forward
- A small object begins a free fall from a height of 29.0 m. After 1.10 s, a second small object is launched vertically upward from the ground with an initial velocity if 37.0 m/s. At what height h above the ground will the two objects first meet? Asked to use the equation y=y0+v0yt--1/2gt^2 and assume gravity as I believe 9.8 m/s^2arrow_forwardA golfer hits a shot to a green that is elevated 2.50 m above the point where the ball is struck. The ball leaves the club at a speed of 19.5 m/s at an angle of 40.0° above the horizontal. It rises to its maximum height and then falls down to the green. Ignoring air resistance, find the speed of the ball just before it lands. V = iarrow_forwardIf a 2.0 kg weight falls 4.0 meters vertically downward from rest, how fast will it be going just before it hits the ground? Take g to be equal to 10 m/s^2 and ignore air resistance.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY