STEEL DESIGN (LOOSELEAF)
STEEL DESIGN (LOOSELEAF)
6th Edition
ISBN: 9781337400329
Author: Segui
Publisher: CENGAGE L
bartleby

Concept explainers

Question
Book Icon
Chapter 5, Problem 5.2.1P
To determine

(a)

Plastic section modulus Z and the plastic moment Mp with respect to the major principal axis.

Expert Solution
Check Mark

Answer to Problem 5.2.1P

The plastic section modulus Z=185.437in3 and the plastic moment Mp=772.65ft.kips with respect to the major principal axis.

Explanation of Solution

Given:

A flexural member is fabricated from two flange plates 12×712 and a web plate 38×17. The stress of the steel is 50Ksi.

Concept used:

The section is a symmetrical section which implies that the plastic neutral axis of the given section is same as the neutral of the given section. Therefore, calculating the lever arm and the centroid of the upper half of the given section, we can find the plastic section modulus.

We have the following figure that will define the terms that we have been given as per the question.

STEEL DESIGN (LOOSELEAF), Chapter 5, Problem 5.2.1P , additional homework tip  1

Calculation:

The following is the tabular measurement of every component required:

Elements h(inches) b(inches) A=h×b(inches)2 y(inches) Ay(inches)3
Web 38=0.375 172=8.5 8.5×0.375=3.1875 8.50 27.09
Flange 12=0.5 712=7.5 0.5×7.5=3.75 17.50 65.625
Sum A=6.94 y=26.00 Ay=92.72

Calculating the centroid of the top half as :

y¯=AyA

Substitute the values in the above equation.

y¯=Ay=92.72inA=6.94iny¯=13.36in.

Now, calculating the moment arm, we have the following formula :

a=2×y¯

Where, a is the moment arm of the section.

a=2×y¯a=2×13.36in.a=26.72in.

Now, the plastic section modulus can be calculated as follows:

Z=(A2)×a

Where, Z is plastic section modulus and A is area.

Z=(A2)×aZ=6.94in2×26.72in.Z=185.437in3.

Calculating the plastic moment as follows:

Mp=Fy×Z

Substitute the value of Fy and Z, we have

Mp=Fy×ZMp=50Ksi×185.437in3.Mp=9271.85in.kips.Mp=772.65ft.kips.

Conclusion:

Therefore, the plastic section modulus Z=185.437in3 and the plastic moment Mp=772.65ft.kips with respect to the major principal axis.

To determine

(b)

Elastic section modulus, S and the yield moment, My of the section with respect to the major principal axis.

Expert Solution
Check Mark

Answer to Problem 5.2.1P

The elastic section modulus, S=272.284in3 and the yield moment of the section with respect to the major principal axis is My=1134.52ft.kips.

Explanation of Solution

Given:

A flexural member is fabricated from two flange plates 12×712 and a web plate 38×17. The stress of the steel is 50Ksi.

Concept used:

The section is a symmetrical section which implies that the elastic neutral axis of the given section is coinciding with the neutral of the given section. Therefore, calculating the moment of inertia at the major axis using parallel axis theorem, we can find the elastic section modulus.

We have the following figure that will define the terms that we have been given as per the question.

STEEL DESIGN (LOOSELEAF), Chapter 5, Problem 5.2.1P , additional homework tip  2

Calculation:

The following is the tabular measurement of every component required:

Elements I¯(inches)4 A=h×b(inches)2 d(inches) I=I¯+A×d2(inches)4
Web 153.53 17×38=6.375 0.00 153.53
Top Flange 0.078125 0.5×7.5=3.75 17.50 I=0.078125+(3.75×17.502)I=1148.52
Bottom Flange 0.078125 0.5×7.5=3.75 17.50 I=0.078125+(3.75×17.502)I=1148.52
Sum I=2450.56

Calculate the Elastic section modulus S with the following formula

S=Ic

Where, C is the distance between the extreme fiber of the section and the neutral axis and is equal to

c=hw2+bf

Here, hw is the height of the web and bf is the width of flange.

By substituting the values in the above equation, we have

c=hw2+bfc=172+0.5c=8.5+0.5c=9.00in.

Substitute the value of c in the following equation, S=Ic

S=2450.56in49.00inS=272.284in3.

Now, calculate the yield moment My of the section with respect to the major principal axis as follows:

My=Fy×S

Substitute the value of Fy and S, we have

My=Fy×SMy=50Ksi×272.284in3.My=13614.22in.kips.My=1134.52ft.kips.

Conclusion:

Therefore, the elastic section modulus, S=272.284in3 and the yield moment of the section with respect to the major principal axis is My=1134.52ft.kips.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Bars AD and CE (E=105 GPa, a = 20.9×10-6 °C) support a rigid bar ABC carrying a linearly increasing distributed load as shown. The temperature of Bar CE was then raised by 40°C while the temperature of Bar AD remained unchanged. If Bar AD has a cross-sectional area of 200 mm² while CE has 150 mm², determine the following: the normal force in bar AD, the normal force in bar CE, and the vertical displacement at Point A. D 0.4 m -0.8 m A -0.4 m- B -0.8 m- E 0.8 m C 18 kN/m
Draw the updated network. Calculate the new project completion date. Check if there are changes to the completion date and/or to the critical path. Mention the causes for such changes, if any. New network based on the new information received after 15 days (Correct calculations, professionally done). Mention if critical path changes or extended. Write causes for change in critical path or extension in the critical path.
The single degree of freedom system shown in Figure 3 is at its undeformed position. The SDOF system consists of a rigid beam that is massless. The rigid beam has a pinned (i.e., zero moment) connection to the wall (left end) and it supports a mass m on its right end. The rigid beam is supported by two springs. Both springs have the same stiffness k. The first spring is located at distance L/4 from the left support, where L is the length of the rigid beam. The second spring is located at distance L from the left support.

Chapter 5 Solutions

STEEL DESIGN (LOOSELEAF)

Knowledge Booster
Background pattern image
Civil Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Steel Design (Activate Learning with these NEW ti...
Civil Engineering
ISBN:9781337094740
Author:Segui, William T.
Publisher:Cengage Learning
Text book image
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning
Text book image
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Text book image
Solid Waste Engineering
Civil Engineering
ISBN:9781305635203
Author:Worrell, William A.
Publisher:Cengage Learning,
Text book image
Traffic and Highway Engineering
Civil Engineering
ISBN:9781305156241
Author:Garber, Nicholas J.
Publisher:Cengage Learning
Text book image
Engineering Fundamentals: An Introduction to Engi...
Civil Engineering
ISBN:9781305084766
Author:Saeed Moaveni
Publisher:Cengage Learning